

BMR: Benchmarking Metrics Recommender for Personnel issues

in Software Development Projects

Ángel García-Crespo, Ricardo Colomo-Palacios,

Juan Miguel Gómez-Berbís, Myriam Mencke

Computer Science Department, Universidad Carlos III de Madrid,

Av. Universidad 30, Leganés, 28911, Madrid, Spain

[angel.garcia, ricardo.colomo, juanmiguel.gomez, myriam.mencke]@uc3m.es

www.uc3m.es

(leave space here)

Abstract

This paper presents an architecture which applies document similarity measures to the documentation produced

during the phases of software development in order to generate recommendations of process and people metrics for

similar projects. The application makes a judgment of similarity of the Service Provision Offer (SPO) document of

a new proposed project to a collection of Project History Documents (PHD), stored in a repository of unstructured

texts. The process is carried out in three stages: firstly, clustering of the Offer document with the set of PHDs which

are most similar to it; this provides the initial indication of whether similar previous projects exist, and signifies

similarity. Secondly, determination of which PHD in the set is most comparable with the Offer document, based on

various parameters: project effort, project duration (time), project resources (members/size of team), costs, and

sector(s) involved, indicating comparability of projects. The comparable parameters are extracted using the GATE

Natural Language Processing architecture. Lastly, a recommendation of metrics for the new project is made, which

is based on the transferability of the metrics of the most similar and comparable PHD extracted, here referred to as

recommendation.

Keywords: Ontologies, Software Metrics, Semantics, GATE, Natural Language Processing.

1. Introduction

The importance of software in today’s industry is

without doubt. Given the critical role of software, the

requirement for project plans adjusted for time, effort,

cost and quality has become a fundamental element for

organizations producing software. Demonstrating the

advancement of the field, since the end of the 1970s

until the present, initiatives have been developed which

aim to accurately plan projects in relation to their actual

realization. In this environment, outsourced software

services are drawn up in response to offer requests from

the perspective of the invisible development process
1
,

that is, managers make their decisions based on their

personal perceptions rather than on contrasted data.

Various authors have proposed the use of metrics to

improve software development’s visibility, for example
2, 3

. Many years ago, Basili
4
 wrote “All the data

collected on the project should be stored in a

computerized data base. Data analysis routines can be

written to collect derived data from the raw data in the

data base”. It is precisely this statement which is the

motivation of the current work, adapted to present-day –

to recollect metrics and parameters of past projects with

the objective of planning future projects with better

precision, based on the Offer documentation.

The system is a tool to enable organizations embarking

on new software development projects to utilize

automatic benchmarking, as it compares the Offer

document of a new project with sets of similar PHDs,

Á. García-Crespo et al.

and consequently recommends metrics based on the

PHD which is most comparable to the Offer document

from a set of similar PHDs. Benchmarking is

implemented, because only the metrics from the most

comparable PHD document are recommended, whose

appropriateness in the project has already been proven

in the project previously completed.

The paper consists of the following sections. Section 1

introduces the setting of the research for the software

development process, in particular with regard to

software engineering metrics. This is followed by an

introduction to the theory of information extraction, and

an overview of the Natural Language Processing (NLP)

techniques used for the practical implementation of such

tasks, namely the GATE (General Architecture for Text

Engineering) architecture and document clustering

methods. Section 2 describes the architecture of the

system and the components it is comprised of. Section 3

presents a use case which illustrates the uses of the

system, and Section 4 discusses conclusions and future

research work.

1.1. Software Metrics

In short, according to Boehm
5
, software metrics help us

to make better decisions. The first book dedicated to

describe Software Metrics dates from 1976
6
, but the

history of active software metrics dates back to the mid-

1960's when the Lines of Code metric was used as the

basis for measuring programming productivity and

effort
7
 . Thus, as has just been mentioned, the first book

dates from 1976, but the first initial efforts to use

metrics, in this case, Lines of Code, dates from 1971.

The focus of this effort was to oversee the quality of

software produced. Another study
8
 dealt with module

defect density (number of defects per KLOC) in terms

of the module size measured in KLOC.

Fenton and Pfleeger
9
 classify software metrics into

three main categories: product, process and resources

metrics. According to this taxonomy, personnel metrics

are under resources metrics category. Without a doubt,

the effective combination of the three categories

produces hybrid metrics rich in information, in relation

to individual and group productivity. The current work

is focused on these types of metrics as well as the

central category of personnel metrics.

More precisely, a metric is a quantifiable measurement

of software product, process, or project that is directly

observed, calculated, or predicted
10

. Considering this

definition, software metrics may be obtained by means

of observation, they may be calculated, or predicted.

Additionally, within the metrics universe the research

work is focused on the establishment of these types of

metrics, in particular, metrics related to personnel

factors, such as skills, experience, work load, and

productivity.

1.2. Personnel in Software Metrics

The decision to concentrate the research on personnel

metrics was not taken trivially. According to
11

,

Personnel attributes and Human Resource activities

provide by far the largest source of opportunity for

improving software development productivity. Previous

work by
5
 states that “After product size, people factors

have the strongest influence in determining the amount

of effort required to develop a software product”.

Failure rates in software projects are high and the

qualified software engineers able to deal with software

development processes, and their shortcomings and

caveats
12

 represent a scarce resource. Software

development teams are composed of professionals with

a heterogeneous training, background and expertise
13

,

that management must be able to evaluate and provide

with a professional view, with the ultimate goal of

improving the competences of the workforce and their

results
6
.

Taking into account, on the one hand, the importance of

personnel in development projects, and on the other

hand, the benefits of reliable metrics for the most

appropriate estimation and constant improvement of the

software process, the current work proposes an

architecture capable of extracting personnel related

metrics using Natural Language Processing techniques.

These metrics will be extracted from repositories of

metrics generated through the application of Natural

Language Processing to repositories of documents.

Numerous authors have carried out work in the field of

the use of software repositories applied to software

metrics, in relation to their design
14

, or their application

to specific problems in the field of software engineering
15

. Concerning the software industry, since the 1970s

initiatives for repositories of metrics have emerged, for

example, DACS Productivity Dataset

(http://www.thedacs.com/databases/sled/prod.shtml),

The architecture research facility (ARF) dataset,

(http://www.thedacs.com/about/services/pdf/Data-

Brochure.pdf), the NASA/SEL Dataset

 BMR: Benchmarking Metrics Recommender

(http://www.dacs.com/databases/sled/sel.shtml), or the

repository of the International Software Benchmarking

Standards Group (http://www.isbsg.org/). The proposed

research work does not aim to be based on data

unconnected with an organization, rather, it is focused

on an organization’s own data. Thus, taking account of

documents generated in previous projects, the objective

is to automatically construct a set of metrics relative to

project personnel, taking advantages of the

functionalities provided by Information Extraction with

Natural Language Processing

1.3. Information Extraction with Natural

Language Processing

The use of NLP to derive parameters related to project

size, effort, time, and resources is an example of the

application of computational techniques which originate

in the Information Extraction (IE) field. Information

Extraction refers to the processing of free (unstructured)

text documents in order to annotate them with a

meaningful, predefined structure relevant for a specific

task, and readable by a particular system. Other

definitions have been proposed by
16

, who refers to

information extraction as the identification of instances

of a particular class of events or relationships in a

natural language text, and the extraction of the

associated features of these entities. The problem at

hand is usually restricted to a defined domain, in other

words, it is domain dependent. In the case of this work,

it is evident that the application of the techniques is

limited to the software engineering domain. The

information derived from a text may be divided into

particular categories of linguistic content, such as

named entities; references to people, locations, names of

corporations (proper nouns) and numerical and temporal

expressions, attributes associated with the entities, for

example, a person’s job title, real world facts, and

events.

Systems which represent the information captured in

software engineering documentation for knowledge

reuse in itself is not new, however, the current

architecture uses automatic extraction of features

specifically for the recommendation of metrics. A

system which specifically applied the extraction of

linguistic information for the task of validation of

software documentation is the SIFT (Specific

Information from Text) system
17

, which was executed

on online software reference manuals and help systems

semi-formatted with XML. The system extracts

sentences and their semantics defined by a linguistic

formalism, the generative lexicon
18

. The system was

used to evaluate an online help system for the Adept

series of structured editors
19

. In particular, sentences

which defined specific information in the description of

the repository API were extracted, those referring to the

return codes for routines for accessing document and

document fragments stored in an external repository.

Thus, an extremely useful functionality of sentence

extraction using NLP techniques is exhibited in this

situation: a developer noted that one of the routines

contained an incorrect return code, and by using SIFT,

38 sentences about error return codes out of 46

descriptions of routines were extracted automatically

and could be verified for accuracy.

Álvarez-Macías et al.
20

 evaluated the performance of

the application of two data mining algorithms to the

values of the attributes which comprise a companies’

management process, such as staff hiring, staff

dismissal and staff adaptation, to construct rules which

measure the influence of these variables on outcome

parameters like effort assignment, personnel, and

delivery time. The algorithms tested were based on

Evolutionary Algorithms, GAR, an unsupervised

method which builds association rules between the

variables in projects, and ELLIPSES, a supervised

classification method which constructs mathematical

regions for project parameters and determines which

rules are most appropriate for each region.

The current paper focuses on the novel application of IE

methods by specifically extracting information relevant

to project planning and organizing, and thus the

associated metrics. The extraction of the objects in the

current work which refer to size, time, effort and

resources are an example of an IE task known as noun

chunk extraction, where the items extracted are noun

chunks predefined by JAPE grammar rules, which will

be explained further below. To perform this task, the

GATE (General Architecture for Text Engineering)

platform has been incorporated into the platform, and

the capabilities of the language of GATE, JAPE, have

been exploited. JAPE can be used to recognize the

regular expressions contained in the text annotations

made by GATE. A brief overview of the functionalities

of GATE will be given, and its accompanying rule

recognition language JAPE.

Á. García-Crespo et al.

1.3.1. GATE

GATE is a NLP architecture specifically designed to

perform the tasks referred to above, for example,

Named Entity Recognition and Coreference resolution ,

determining attributes associated with entities, which

indicate equivalence between entities. However, these

are just two examples of the functionalities of GATE. In

fact, it consists of three principal components which

enable the execution of a host of adaptable language

engineering tools, whose successful functioning has

been demonstrated in a number of IR tasks throughout

literature.

Despite of GATE is a well know tool that enables NLP,

it is still present in many recent research projects E.g.
21,22,23,24

.

The main elements of GATE are comprised of an

architecture for language processing, a Java framework

which forms the backbone of such a system, and a

graphical development environment which allows

manipulation of the framework for language engineers

to build their own personalized language engineering

tools and processing resources. GATE initially comes

with a set of built-in processing resources, referred to in

the platform as ANNIE (A Nearly New Information

Extraction System). These are linguistic tools which

have specific language processing functions
25

, namely a

tokeniser, gazetteer, sentence splitter, POS (Part of

Speech) tagger, named entity transducer and an

orthographic name-matcher.

The Gazetteer component of ANNIE is particularly

useful in this architecture, as it consists of a set of

predefined lists of nouns. Each item in the list has been

pre-assigned an attribute, for example, organization,

currency_unit, or manufacturer. The attributes are input

to JAPE grammars (discussed below). This functionality

enables the identification of the resources used in

projects, for example, “IBM Requisite PRO”, or

“CSW”.

When documents are processed by GATE, they are

input to what is referred to as a GATE document

pipeline, and the language processing tasks are

performed sequentially. The language used to modify

the capabilities of the processing resources is called

JAPE. A description of JAPE is given below.

1.3.2. JAPE

Fundamentally, JAPE provides a tool for language

engineers to define the characteristics of the sentences

or phrases which they wish to extract in the particular

application in question. It is a language for matching

GATE annotations to regular expressions, thus it is

essentially using pattern matching to construct more

annotations using finite state autonoma. The patterns are

defined as rules, a JAPE Grammar, which constitute a

finite state machine. The rules are invoked on each text

in sequence when it is input to the GATE document

pipeline, as previously described.

In the current architecture, the first step is the clustering

of the Project History Documents (PHDs) using a

document clustering technique, an overview of which

will be provided below. Once the PHDs have been

grouped, and the input Offer document is grouped with

the most similar set, the PHD which is most similar to

the to the Offer document is determined by automatic

analysis of the sentences which refer to project effort,

time, and resources. It is the application of JAPE rules

which allow such a comparison between relevant

content of the two documents. Therefore, in order to

extract all of the relevant phrases, the JAPE rules search

for all possible sequences of annotations which match

the rules. For the current research, the aim is to

construct rules for phrases which indicate comparability

of projects, such as project size, costs, sector, effort,

time, and resources. Options exist for assigning

priorities to the application of rules, that is, for example,

if several phrases match the rule, only the one which

matches the longest set of annotations from the input is

accepted. In natural language, such a rule may be

written as "If the sequence of tokens 'staff', 'hours' is

preceded by a numerical value annotation, then create a

new Time annotation for the three tokens" This sample

rule will match the phrase "200 staff hours" as a name

of the time involved in the project and annotate it

accordingly, even if this phrase is not included in

Gazetteer lookup lists. Equivalently, the same rule could

be written for the sequence of tokens ‘man’ ‘hours’

preceded by a numerical value. This enables extraction

of all variables which refer to time in hours. Or, for

example, a similar rule could be used to identify that the

phrases “6 team members”, “team of 6” and “team size

of 6” refer to a team size variable. The rules which are

written here in natural language are converted to a

formal JAPE grammar.

 BMR: Benchmarking Metrics Recommender

1.4. Document Clustering Techniques

As mentioned above, the first component of the

architecture groups the PHDs using a document

clustering method. A support vector machine (SVM)

has been used to cluster the documents, however, any of

a number of clustering methods could be applied to

perform document similarity measures.

The first stage of knowledge acquisition and reduction

of complexity concerning a group of objects is to

partition or divide the objects into groups based on their

attributes or characteristics
26

.

Document clustering is a form of unsupervised machine

learning, which given a set of input documents, extracts

features from the documents and groups the documents

into clusters based on the presence or absence of the

features. Document clustering has been defined by
27

 as

“Cluster analysis is the art of finding groups in data”.

Defined formally, D denotes a domain of documents

and C = {c1, c2, c3, ...c|c|} a set of categories. The pair

(di, cj) represents (document, category). A Boolean

value b ∈ {T, F} is assigned for each pair (di, cj) ∈ D ×

C, where the value T indicates that the document di will

be attributed to class cj, and the value F implies that the

document will not be assigned to the class
28

. This

definition has been defined in the context of text

classification, where the set of categories is defined a

priori by the automated classifier user. The essential

difference introduced by text clustering techniques is

that classes are not previously defined, instead the

clustering algorithm constructs the classes based on

feature frequencies and/or weights assigned to features.

Examples of machine learning approaches for text

clustering include bisecting K-means, Support Vector

Machines, Latent Semantic Indexing, Naïve Bayes, K-

medians. Additionally, these techniques may be divided

into two groupings: the K-means method and

agglomerative hierarchical methods. This division may

also be viewed as the division between partitioning

algorithms such as k-means or k-medoid, and

hierarchical algorithms such as Single-Link or Average-

Link
27

.

1.4.1. Vector Space Model

The majority of document clustering techniques which

have been proposed in the literature apply the Vector

Space Model
29

. The vector space model is an algebraic

model used for information filtering, information

retrieval, indexing and relevancy rankings. It represents

natural language documents (or any objects, in general)

in a formal manner through the use of vectors (of

identifiers, such as, for example, index terms) in a

multidimensional linear space. Each document is

represented by a vector in the term space. The set of

terms is a predefined collection of terms, for example

the set of all unique words occurring in the document

corpus. Relevancy rankings of documents in a keyword

search can be calculated, using the assumptions of

document similarities theory, by comparing the

deviation of angles between each document vector and

the original query vector, where the query is represented

as same kind of vector as the documents.

1.4.2. Neural Networks

A neural network (NN) model is an artificial

intelligence framework which is closely related to

SVMs, as both models involve machine learning. As

with SVMs, the NN is trained to learn from examples.

The techniques are similar in the sense that they both

consist of a black box which can ‘learn’; the feature

values are the input to the box, and the output, the class

the text falls into.

1.4.3. Latent Semantic Indexing

In the SVM model, frequency vectors are normalized

for text length and may be allocated importance

weights. Zipf’s law is the factor that underlies

normalization and the assignment of weights to features

in the SVM calculations, as it is a mathematical model

which assumes that the frequencies of common

linguistic features in texts are high, and that frequencies

decrease proportionally. However, even when weights

are assigned to features, the construction of vectors is

based on the assumption that the features are

independently distributed. The existence of semantic

relations in text such as synonymous and polysemous

words breaches this assumption. Latent Semantic

Indexing (LSI) is a model of text categorization which

attempts to overcome the presence of ambiguous lexical

relations in texts. Sebastiani
30

 describes LSI as a

method of dimensionality reduction by term extraction

which exploits the inter-relationships between

synonymous, near-synonymous and polysemous lexical

relations. It is viewed as a dimension reduction

technique because it is a similar term extraction model

to SVMs, but the vectors have a lower-dimensional

space, as their dimensions are generated from the

Á. García-Crespo et al.

patterns of co-occurrence in the dimensions of the

original vectors. The terms extracted represent the

‘latent’ semantic relations in the texts.

1.4.4. Support Vector Machines SVMs

SVMs were alluded as a particular model of machine

learning. In this technique, which was proposed by

Vapnik
31

, the model for classification is generated from

the training process with the training data. Owing to its

usefulness, it has been widely adopted in various fields

of classification problems in recent years, including

medical diagnoses
32

, tourism projections
33

, sound

processing
34

 or recommender systems
35

.

The SVM algorithm exploits the use of vectors which

model the distributions of features in texts. Each vector

is a point in a n-dimensional space (n is the number of

features) , which can hold either a Boolean value

signifying whether or not the feature exists in the

document, or the frequency of occurrence of the feature
28

. The objective of SVM modeling is to define the

optimal line (hyperplane) which divides groups of

vectors into separate categories. In its simplest form,

SVMs can be used to differentiate two categories. The

support vectors are the vectors in closest proximity to

the line. The task is to determine which of these vectors

best describe the division between the two categories.

Diederich and Kindermann
36

 refer to the distance of the

hyperplane which separates the two categories as the

maximum interclass distance, the margin.

SVMs can also be used when points are categorized by

a non-linear region, which requires a non-linear model.

Frequency vectors are generally normalized to account

for text length, and the raw feature frequencies or log-

transformed feature frequencies may be assigned

importance weights. The primary advantage of SVMs

for clustering is that they can measure thousands of

features, if necessary all of the n-grams in the text.

2. BMR: Benchmarking Metrics Recommender

The current section describes the architecture of the

system. The component which provides the initial

interaction of the customer with the system is the web-

based user interface, which has functionalities for

uploading two classes of documents: the SPO and PHD.

HDs may be uploaded at company level. For example,

the manager of a software development company can

upload the entire set of PHDs of the company, and

continue to upload them systematically as new products

are developed over time, or he can upload a number of

PHDs which he considers to be related to an Offer

document he is about to upload. All of the documents

uploaded are later stored in two separate repositories: a

rich PHD repository and an SPO repository. Metrics are

extracted from each PHD during the Natural Language

Processing phase, and stored in a Metrics Repository. In

order to clearly illustrate the architecture, the

repositories have been described as three distinct

components. However, the three repositories together in

fact comprise a single repository, and may be

conceptualized as one repository with three different

parts.

Each document which is input to the system, regardless

of whether it is a SPO or a PHD, is first subject to text

processing. This is the first step of the algorithm. The

specific components of the architecture are described in

Fig. 1, which illustrates the architecture. Mentioned

architecture consists of the following components:

 BMR: Benchmarking Metrics Recommender

Text processor

This component converts each input document to plain

text (including tables or graphics which contain text),

and extracts the sections of each document which

contain information relevant for measuring document

similarity. These sections are then concatenated in order

to re-construct the document into its final format, prior

to its input to the GATE NLP pipeline. In existing NLP

software architectures, often GATE is used to perform

all text processing required. However, in the current

architecture, in order to extract relevant parameters,

specific sections of the PHDs, SPOs, and Metrics

documents which contain parameters related to project

comparability are required. Thus, it was decided to carry

out pre-processing of the documents in order to parse

only the sections needed for comparison. This also

contributed to computational efficiency, by reducing

processing time. Three parts of the document content

are relevant for extraction:

a) Description of the Project

b) Software Production factors such as effort,

time, resources, costs, and industry sector.

These comprise the comparability variables.

c) Text relating to project metrics – those which

comprise part of the content of the PHDs. The

specific metrics extracted are later transferred

to a separate repository containing project

metrics relevant to each particular document,

during the Natural Language Processing phase.

Natural Language Processor

Each text which is uploaded becomes part of a GATE

document pipeline. All of the NLP tasks in GATE

which are required in any particular application can be

executed on each of the documents in the pipeline in

sequence. In the architecture, GATE libraries are used

to perform the following NLP tasks:

a) Syntactic annotation of noun phrases, using

GATE’s NP_Chunker

b) Application of JAPE rules to extract all phrases

related to project comparability. The only

comparability factors extracted which do not

have a numerical value associated with them

are the variables which describe the industry

sector. These are annotated noun phrases such

as “fish stock management application”, or

“bookmarking web application”. Gazetteer lists

v

Presentation
Layer

B

M

R

A

r

c

h

i

t

e

c

t

u

r

e

Graphic User
Interface

Application
Layer

v

v

v

Data
Layer

Text Processor

Natural Languaje
Processor

Compatibility Engine

Metrics Processor

Recomme
nder

Success
Analyzer

PHD

OD

OD
Repository

Metrics
Repository

PHD
Repository

Fig. 1. BMR Architecture.

Á. García-Crespo et al.

have been added to GATE with phrases which

define each sector. The lists have been grouped

according to EU industry specifications

(http://ec.europa.eu/enterprise/sectors_en.htm).

If the industry is not mentioned or has not been

annotated correctly by a JAPE rule, it is

omitted.

The GATE NLP component results in the storage of

each PHD and each SPO in their respective repositories,

with an associated list of comparability variables. For

example, PHD DOCID1 will have a list of variables

with corresponding values, for example, Variable Q,

Value 100, Variable R, Value 200, Variable S, Value

3…Variable N, Value n. Each SPO document will have

an ID and a similar associated list of variables.

The metrics from each PHD uploaded are also extracted

and stored in a Metrics repository. In the current

research work, this process is referred to as Metrics

Extraction. The repository will contain a list of metrics

associated with each PHD, for example, PHD DocID1

will have Metric 1, Value a, Metric 2, Value b…Metric

n, value x.

Comparability Engine

The annotated documents are the input to a

comparability engine. In the comparability engine, the

PHDs are clustered using a text clustering algorithm.

Each time a PHD is added to the repository, the

document is clustered with the group of PHDs to which

it is most similar, through the application of a Support

Vector Machine algorithm based on lexical content. The

comparability engine has three main functions:

a) Clustering of each PHD document using a

Support Vector Machine

b) Clustering the input Offer Document with the

most similar set of PHDs

c) Gauging comparability of the Offer document

with each of the PHDs in this set, based on

comparability variables.

The output of the execution of the Comparability

Engine results in the following structure. The metrics

associated with each PHD have already been stored in a

metrics repository, as they were extracted from each

PHD during the text processing phase. Therefore, the

output of the comparability engine is the PHD which is

most similar to the input Offer document (based on the

values of the comparability variables), and its associated

metrics. The most appropriate metrics from the most

similar PHD are then recommended to the user by the

metrics recommender. The metrics engine will now be

described.

Metrics Processor

The metrics processor consists of two components: a

Metrics Recommender, and a Success Analyzer.

The Metrics Recommender proposes the metrics for the

input Offer document to the user, based on the variables

described above. It is at this point where the novelty of

the system is exhibited: not only does the system

recommend suitable metrics, but the user can modify his

SPO based on the metrics recommended, and a

subsequent evaluation of the success of the metrics

suggested for the Offer is performed. This is carried out

by the Success Analyzer.

The Success Analyzer can be described as follows. As

part of the metrics recommender phase, the user

modifies his Offer document based on the new metrics

recommended. He then carries out the software

development process according to the revised Offer

document, with new values for each variable. This

results in the production of a PHD. The values of the

comparability variables for the following documents are

thus available: SPO (Version 1), SPO (Version 2), and

PHD (based on Version 2). Thus, it is possible to apply

an algorithm to perform the following comparisons: the

similarity of SPO V1 and SPO V2, the similarity of

SPO V1 and the PHD, and the similarity of SPO V2 and

the PHD. The metrics in the PHD are then assigned

weights according to their actual importance in SPO V2.

The metrics and their corresponding weights are then

transferred back to the metrics repository.

A simple mathematical algorithm is applied to

determine the distance between the comparability

variables, and thus, the similarity of the variables in the

documents. For example, it is clearly possible to

evaluate that two projects with respective team sizes of

6 and 10 are more similar than two projects of team size

6 and 150. During the execution of the algorithm, it may

result from the processing of the values in the PHD

(generated from Version 2 of the Offer document) that

in fact the value associated with the metric “New

Recruitment Rates” in the PHD is high, indicating the

importance of this metric. This leads to the consequent

assignment of weights accordingly.

In future research, it is intended to evaluate the effect of

a number of weighting schemes on the performance of

the architecture (E.g.
37, 38

).

 BMR: Benchmarking Metrics Recommender

The objective of the system is achieved, as the most

appropriate metrics are recommended based on

principally numerical comparability variables, and

subsequently assigned importance weights as a measure

of their suitability. The weights are continually adjusted

based on the variables, thus as the volume and range of

PHDs and SPOs in the repositories increase, the

appropriateness of the metrics correspondingly becomes

more refined.

3. Use case scenario

The use of the BMR architecture presents two distinct

use case scenarios, which can be differentiated by the

type of document under processing. The first use case

which illustrates the function of the tool is the

processing of the PHD. The processing of the PHD

document enables the user to generate a repository of

metrics and establish the variables associated with each

document. It also allows the user to process a PHD

which may be part of a batch of PHDs produced in the

company, or the result of a project currently being

carried out in the company, with the objective of

uploading several documents in order to generate

accurate data, and keep the repository up to date. The

second use case scenario enables the user to upload an

Offer document in order to receive metrics

recommendations for a prospective project, once the

first completed version of the Offer is prepared.

In order to set the scene for the use case, it is assumed

that the PHD repository is already populated, and that

the repository of the metrics extracted from the PHDs

analyzed has been created, including the weights of the

metrics as a function of their suitability for being used

in projects. At this point, the company QMECC

(fictional name) has drafted an offer document entitled

OD_1. The offer is a document outlining the work plan

for the parameterization of an ERP (Enterprise Resource

Planning) system in the environment of an editorial

company, in particular, focusing on billing and stock

management. In order to carry out the customized tasks,

it is established that a group of 7 consultants is required

(2 senior, 5 junior), lead by a project leader over a 3

month time period, with a total effort of 1 month per

staff member, in the case of the project leader, 2 months

per staff member for each of the senior consultants, and

3 months per staff member for each of the junior

employees.

Using the BMR Graphic User Interface, the document is

uploaded and temporarily stored on the server, with its

pending destination being the text processing

component. The text processor converts the file to plain

text and extracts the sections of the document which

contain the details of the comparability variables

relevant for NLP processing. Thus, the output is a plain

text file, which contains the relevant sections of the

SPO. This intermediate product is sent to the NLP

component, which, in the case of the PHD documents,

extracts metrics, and in the case of the both the PHD

and the SPOs, determines the comparability variables

and their values. Once this process in completed

(described in the Architecture section), it is established

which cluster of PHDs is most similar to the SPO.

Subsequently, the SPO is compared to all of the

documents in this cluster, in order to determine to which

PHD it is most comparable. Once the most comparable

PHD is established, the Metrics Processor makes a

recommendation of metrics, which it is able to extract

from the Metrics Repository. The repository contains

the metrics associated with all of the PHDs in the cluster

to which OD_1 is most similar.

With the objective of ensuring traceability of the

recommendations, not only is the Offer document

stored, but the metrics which have been recommended

are also stored. At this moment, using the metrics

information provided, the user has the possibility to

incorporate the metrics recommended into his project

planning, and subsequently upload a new version of the

SPO. The variables in the new version of the SPO may

have changed, based on the metrics previously

recommended.

Suppose that the metrics relating to staff productivity

which were suggested have implicated a mayor increase

in the number of hours required by the project leader in

client supervision tasks (Metric MT1), corresponding to

1.5 months of staff hours. This circumstance implies a

significant additional cost for the company. Based on

this analysis, the user can incorporate SPO document

OD_2 to the repository.

If the offer presented is accepted by the client, QMCC

has the possibility to reload the system with the PHD of

the project which it has undertaken. Thus, at this point,

the system contains OD_1 and OD_2, the PHD and their

associated variables. OD_2 is uploaded and processed

by the components in the usual way the system

processes documents, but with the final objective of

enriching the PHD repository. It is evident that the

metrics processing phase represents an extremely novel

Á. García-Crespo et al.

function. The metrics processor, aided by the output of

the NLP component, locates and stores the metrics

extracted from the PHD in the Metrics Repository. The

subsequent task consists of an examination of the

success of the metrics specified in OD_1 and OD_2, and

a comparison with the actual metrics in the content of

the PHD, which were specified upon termination of the

project.

In the current SPO of QMECC, it can be assumed that

the metric recommended for MT1 was 20 days per staff

member, while in the PHD, the value transpired to be 19

days per staff member. Additionally, regarding the

effort variables, they changed from 1 month per staff

member in OD_1 to 1.5 months in OD_2, in the case of

the project leader. However, the PHD indicated that the

actual number of months for this worker was 1.4.

Supposing that this was the only metric indicated, the

Success Analyzer would have the objective to evaluate

the MT1 metric according to how valuable it was

considered, and assign a weight accordingly.

4. Conclusions and future work

During the last decades, the specification of software

metrics has arisen as one of the possible solutions to the

software crisis. Initiatives have been produced to

extract, structure and apply software metrics in

organizations based on internal data and external

projects. In this paper, on the one hand, we have

presented a novel initiative based on the success of

software metrics, and on the other hand, on the use of an

organization’s own information. With this

approximation, the initiative is based on the data and

metrics produced in the organization itself, whose

current situation is reacted to by the recommendation of

the most appropriate metrics.

At the point of the development of the framework, one

of the first decisions which was required to be taken was

the establishment of a set of metrics which were

considered applicable. In this way, and due to the

importance attached to personnel factors, it was decided

to focus on these factors as those which would be

recommended, selecting size, time, and cost metrics,

among others. Particularly, those parameters which are

a significant indication of the comparability of projects

and are crucial decision factors for a corporation.

Numerous possibilities for future research work arose

during the current research. With regard to the

clustering of the PHD documents, it is intended to apply

a supervised learning technique with the categories of

the PHD documents established a priori, in order to

measure the effect on the recommendation of metrics.

Precision and recall measures may then be applied in

order to evaluate the performance of the categorization.

It may also be possible to build on
20

 work and construct

rules for the values of the variables extracted using a

genetic algorithm, and use the rules generated to

recommend metrics, by assigning the most appropriate

metrics for the rules in each classification region.

Concerning the extraction of project parameters,

additional variables which indicate project similarity

could be extracted to determine their effect on the

recommendation of metrics, by the inclusion of more

complex JAPE rules. Additional metrics could be stored

in the metrics repository in order for the system to be

able to recommend metrics for a larger range of project

types. It is also intended to test the application of

different algorithms for assigning weights to metrics. A

further objective of future work is to collect and

evaluate user feedback about their experiences with

using the system.

Acknowledgements

This work is supported by the Spanish Ministry of

Industry, Tourism, and Commerce under the project

SONAR (TSI-340000-2007-212), GODO2 (TSI-

020100-2008-564) and SONAR2 (TSI-020100-2008-

665) and the MID-CBR project of the Spanish

Committee of Education & Science (TIN2006-15140-

C03-02).

References

1. P. Hsia, Making Software Development Visible, IEEE

Software, 13 (3) (1996) 23–26.

2. M. Butcher, H. Munro and T. Kratschmer, Improving

Software Testing via ODC: Three Case Studies. IBM

Systems Journal, 41 (1) (2002) 31–44.

3. L.H. Putnam and W. Myers, Five Core Metrics: The

Intelligence Behind Successful Software Management.

(Dorset House Publishing, NY, 2003).

4. V.R. Basili, Data collection, validation, and analysis. In

Tutorial on Models and Metrics for Software

Management and Engineering, ed. V. R. Basili (IEEE

Computer Society Press, CA, 1980), pp. 310-313.

5. B. Boehm, Software Engineering Economics. (Prentice-

Hall, Englewood Cliffs, NJ, 1981).

6. T. Gilb, Software Metrics. (Chartwell-Bratt, Cambridge,

Mass, 1976).

7. N.E. Fenton and M. Neil, Software Metrics: Successes,

Failures and New Directions, The Journal of Systems and

Software, 47(2/3) (1999) 149-157.

8. F. Akiyama, An Example of Software System

Debugging, Information Processing, 71 (1971) 353-379.

 BMR: Benchmarking Metrics Recommender

9. N.E. Fenton and S. Pfleeger. Software Metrics: a

Rigorous and Practical Approach (Thomson Computer

Press, 1997).

10. R.T. Futrell, D.F. Shafer and L.I. Safer, Quality Software

Project Management. (Prentice Hall, Englewood, NJ,

2002).

11. B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B.K.

Clark, B. Steece, A.W. Brown, S. Chulani, S. and C.

Abts, Software Cost Estimation with COCOMO II.

(Prentice Hall, Upper Saddle River, NJ, 2000).

12. R. S. Pressman, Software Engineering: A Practitioners

Approach (McGraw Hill, New York, NY, 2005).

13. S. McConnell, Professional Software Development.

(Addison-Wesley, Reading, MA, 2003).

14. W. A. Harrison, Flexible method for maintaining

software metrics data: a universal metrics repository, The

Journal of Systems and Software 72 (2) (2004) 225–234.

15. Y. Zhang and D. Sheth, Mining Software Repositories for

Model-Driven Development, IEEE Software, 23 (1)

(2006) 82-90.

16. R. Grishman, Information Extraction: Techniques and

Challenges, In Proceedings of the International Summer

School on Information Extraction: A Multidisciplinary

Approach to an Emerging Information Technology, ed.

M.T. Pazienza, Lecture Notes in Artificial Intelligence

1299 (1997) 10-27.

17. P. Lutsky, Information Extraction for Validation of

Software Documentation, In Proceedings of the 13th

international conference on Industrial and engineering

applications of artificial intelligence and expert systems:

Intelligent problem solving: methodologies and

approaches, ed. R. Loganantharaj, G. Palm, M. Ali,

Lecture Notes in Computer Science 1821 (2000) 29-60.

18. J. Pustejovsky, The Generative Lexicon. (MIT Press,

Cambridge, MA, 1995).

19. Arbortext, Inc. Adept Online Help, Version 8.2., 1999.

20. J.L. Álvarez-Macías, J. Mata-Vázquez and J.C.

Riquelme-Santos, Data Mining for the Management of

Software Development Process, International Journal of

Software Engineering and Knowledge Engineering, 14

(6) (2004) 665-695.

21. R. Gacitua, P. Sawyer and P. Rayson, A flexible

framework to experiment with ontology learning

techniques, Knowledge-Based Systems, 21 (3) (2008)

192-199.

22. Y. Li, K. Bontcheva and H Cunningham, Adapting SVM

for data sparseness and imbalance: a case study in

information extraction, Natural Language Engineering,

15 (2009) 241-271.

23. H. Harkema, J.N. Dowling, T. Thornblade and W.W.

Chapman, ConText: An algorithm for determining

negation, experiencer, and temporal status from clinical

reports, Journal of Biomedical Informatics, In Press

2009.

24. A. Roberts, R. Gaizauskas, M. Hepple, G. Demetriou, Y.

Guo, I. Roberts and A. Setzer, Building a semantically

annotated corpus of clinical texts, Journal of Biomedical

Informatics, In Press 2009.

25. H. Cunningham, GATE, a General Architecture for Text

Engineering, Computers and the Humanities, 36 (2)

(2002) 223-254.

26. R.K. Brouwer, Clustering feature vectors with mixed

numerical and categorical attributes, International

Journal of Computational Intelligence Systems 1 (4)

(2008) 285-298.

27. L. Kaufman and P. Rouseeuw, Finding Groups in Data:

An Introduction to Cluster Analysis (John Wiley and

Sons, New York, NY, 1990).

28. K. H. Lee, Text Categorization with a Small Number of

Labeled Training Examples. Ph.D. thesis, School of

Information Technologies, University of Sydney 2003.

29. G. Salton and C. Buckley. Term-weighting approaches in

automatic text retrieval. Journal of Information

Processing and management, 24 (5) (1988) 513-523.

30. F. Sebastiani, Machine Learning in Automated Text

Categorization, ACM Computing Surveys 34 (1) (2002)

1-47.

31. V. N. Vapnik, The nature of statistical learning theory

(Springer, New York, NY, 1995).

32. E.D. Übelli, Multiclass support vector machines for

diagnosis of erythemato-squamous diseases, Expert

Systems with Applications 35 (4) (2008) 1733–1740.

33. X. Xin, R. Law, T. Wu, Support Vector Machines with

Manifold Learning and Probabilistic Space Projection for

Tourist Expenditure Analysis, International Journal of

Computational Intelligence Systems 2 (1) (2009), 17-26.

34. X.Y. Wang, P. Niu and W. Qi, A new adaptive digital

audio watermarking based on support vector machine.

Journal of Network and Computer Applications 31

(2008) 735-749.

35. A. García-Crespo, J.M. Gómez-Berbís, Colomo-Palacios

and F. García-Sánchez, Using Support Vector Machines

for feature-oriented profile-based recommendations,

International Journal of Advanced Intelligence

Paradigms 1 (4) (2009) 418-431.

36. J. Diederich and J. Kindermann, Authorship Attribution

with Support Vector Machines. Applied Intelligence 19

(1/2) (2003) 109–123.

37. R. Jin, C. Falusos, A.G. Hauptmann, Meta-scoring:

automatically evaluating term weighting schemes in IR

without precision-recall, In Proceedings of the 24th

annual international ACM SIGIR conference on

Research and development in information retrieval, eds.

D.H. Kraft, W.B. Croft, D.J. Harper, J. Zobel (New

Orleans, Louisiana, United States, 2001) pp. 83-89.

38. P. Pantel and D. Lin, Discovering word senses from text,

In Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining,

eds. O. R. Zaïane, R. Goebel, D. Hand, D. Keim, R. Ng

(Edmonton, Alberta, Canada, 2002), pp. 613-619.

