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Abstract 

This paper presents an architecture which applies document similarity measures to the documentation produced 

during the phases of software development in order to generate recommendations of process and people metrics for 

similar projects. The application makes a judgment of similarity of the Service Provision Offer (SPO) document of 

a new proposed project to a collection of Project History Documents (PHD), stored in a repository of unstructured 

texts. The process is carried out in three stages: firstly, clustering of the Offer document with the set of PHDs which 

are most similar to it; this provides the initial indication of whether similar previous projects exist, and signifies 

similarity. Secondly, determination of which PHD in the set is most comparable with the Offer document, based on 

various parameters: project effort, project duration (time), project resources (members/size of team), costs, and 

sector(s) involved, indicating comparability of projects. The comparable parameters are extracted using the GATE 

Natural Language Processing architecture. Lastly, a recommendation of metrics for the new project is made, which 

is based on the transferability of the metrics of the most similar and comparable PHD extracted, here referred to as 

recommendation. 

Keywords: Ontologies, Software Metrics, Semantics, GATE, Natural Language Processing. 

1. Introduction 

The importance of software in today’s industry is 

without doubt. Given the critical role of software, the 

requirement for project plans adjusted for time, effort, 

cost and quality has become a fundamental element for 

organizations producing software. Demonstrating the 

advancement of the field, since the end of the 1970s 

until the present, initiatives have been developed which 

aim to accurately plan projects in relation to their actual 

realization. In this environment, outsourced software 

services are drawn up in response to offer requests from 

the perspective of the invisible development process
1
, 

that is, managers make their decisions based on their 

personal perceptions rather than on contrasted data. 

Various authors have proposed the use of metrics to 

improve software development’s visibility, for example 
2, 3

. Many years ago, Basili 
4
 wrote “All the data 

collected on the project should be stored in a 

computerized data base. Data analysis routines can be 

written to collect derived data from the raw data in the 

data base”. It is precisely this statement which is the 

motivation of the current work, adapted to present-day – 

to recollect metrics and parameters of past projects with 

the objective of planning future projects with better 

precision, based on the Offer documentation.  

The system is a tool to enable organizations embarking 

on new software development projects to utilize 

automatic benchmarking, as it compares the Offer 

document of a new project with sets of similar PHDs, 
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and consequently recommends metrics based on the 

PHD which is most comparable to the Offer document 

from a set of similar PHDs. Benchmarking is 

implemented, because only the metrics from the most 

comparable PHD document are recommended, whose 

appropriateness in the project has already been proven 

in the project previously completed. 

The paper consists of the following sections. Section 1 

introduces the setting of the research for the software 

development process, in particular with regard to 

software engineering metrics. This is followed by an 

introduction to the theory of information extraction, and 

an overview of the Natural Language Processing (NLP) 

techniques used for the practical implementation of such 

tasks, namely the GATE (General Architecture for Text 

Engineering) architecture and document clustering 

methods. Section 2 describes the architecture of the 

system and the components it is comprised of. Section 3 

presents a use case which illustrates the uses of the 

system, and Section 4 discusses conclusions and future 

research work. 

1.1. Software Metrics 

In short, according to Boehm 
5
, software metrics help us 

to make better decisions. The first book dedicated to 

describe Software Metrics dates from 1976 
6
, but the 

history of active software metrics dates back to the mid-

1960's when the Lines of Code metric was used as the 

basis for measuring programming productivity and 

effort 
7
 . Thus, as has just been mentioned, the first book 

dates from 1976, but the first initial efforts to use 

metrics, in this case, Lines of Code, dates from 1971. 

The focus of this effort was to oversee the quality of 

software produced. Another study 
8
 dealt with module 

defect density (number of defects per KLOC) in terms 

of the module size measured in KLOC. 

Fenton and Pfleeger 
9
 classify software metrics into 

three main categories: product, process and resources 

metrics. According to this taxonomy, personnel metrics 

are under resources metrics category. Without a doubt, 

the effective combination of the three categories 

produces hybrid metrics rich in information, in relation 

to individual and group productivity. The current work 

is focused on these types of metrics as well as the 

central category of personnel metrics. 

More precisely, a metric is a quantifiable measurement 

of software product, process, or project that is directly 

observed, calculated, or predicted 
10

. Considering this 

definition, software metrics may be obtained by means 

of observation, they may be calculated, or predicted. 

Additionally, within the metrics universe the research 

work is focused on the establishment of these types of 

metrics, in particular, metrics related to personnel 

factors, such as skills, experience, work load, and 

productivity. 

1.2. Personnel in Software Metrics 

The decision to concentrate the research on personnel 

metrics was not taken trivially. According to 
11

, 

Personnel attributes and Human Resource activities 

provide by far the largest source of opportunity for 

improving software development productivity. Previous 

work by 
5
 states that “After product size, people factors 

have the strongest influence in determining the amount 

of effort required to develop a software product”. 

Failure rates in software projects are high and the 

qualified software engineers able to deal with software 

development processes, and their shortcomings and 

caveats 
12

 represent a scarce resource. Software 

development teams are composed of professionals with 

a heterogeneous training, background and expertise 
13

, 

that management must be able to evaluate and provide 

with a professional view, with the ultimate goal of 

improving the competences of the workforce and their 

results 
6
. 

Taking into account, on the one hand, the importance of 

personnel in development projects, and on the other 

hand, the benefits of reliable metrics for the most 

appropriate estimation and constant improvement of the 

software process, the current work proposes an 

architecture capable of extracting personnel related 

metrics using Natural Language Processing techniques. 

These metrics will be extracted from repositories of 

metrics generated through the application of Natural 

Language Processing to repositories of documents. 

Numerous authors have carried out work in the field of 

the use of software repositories applied to software 

metrics, in relation to their design 
14

, or their application 

to specific problems in the field of software engineering 
15

. Concerning the software industry, since the 1970s 

initiatives for repositories of metrics have emerged, for 

example, DACS Productivity Dataset 

(http://www.thedacs.com/databases/sled/prod.shtml), 

The architecture research facility (ARF) dataset, 

(http://www.thedacs.com/about/services/pdf/Data-

Brochure.pdf), the NASA/SEL Dataset 
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(http://www.dacs.com/databases/sled/sel.shtml), or the 

repository of the International Software Benchmarking 

Standards Group (http://www.isbsg.org/). The proposed 

research work does not aim to be based on data 

unconnected with an organization, rather, it is focused 

on an organization’s own data. Thus, taking account of 

documents generated in previous projects, the objective 

is to automatically construct a set of metrics relative to 

project personnel, taking advantages of the 

functionalities provided by Information Extraction with 

Natural Language Processing 

1.3. Information Extraction with Natural 

Language Processing 

The use of NLP to derive parameters related to project 

size, effort, time, and resources is an example of the 

application of computational techniques which originate 

in the Information Extraction (IE) field. Information 

Extraction refers to the processing of free (unstructured) 

text documents in order to annotate them with a 

meaningful, predefined structure relevant for a specific 

task, and readable by a particular system. Other 

definitions have been proposed by 
16

, who refers to 

information extraction as the identification of instances 

of a particular class of events or relationships in a 

natural language text, and the extraction of the 

associated features of these entities. The problem at 

hand is usually restricted to a defined domain, in other 

words, it is domain dependent. In the case of this work, 

it is evident that the application of the techniques is 

limited to the software engineering domain. The 

information derived from a text may be divided into 

particular categories of linguistic content, such as 

named entities; references to people, locations, names of 

corporations (proper nouns) and numerical and temporal 

expressions, attributes associated with the entities, for 

example, a person’s job title, real world facts, and 

events. 

Systems which represent the information captured in 

software engineering documentation for knowledge 

reuse in itself is not new, however, the current 

architecture uses automatic extraction of features 

specifically for the recommendation of metrics. A 

system which specifically applied the extraction of 

linguistic information for the task of validation of 

software documentation is the SIFT (Specific 

Information from Text) system 
17

, which was executed 

on online software reference manuals and help systems 

semi-formatted with XML. The system extracts 

sentences and their semantics defined by a linguistic 

formalism, the generative lexicon 
18

. The system was 

used to evaluate an online help system for the Adept 

series of structured editors 
19

. In particular, sentences 

which defined specific information in the description of 

the repository API were extracted, those referring to the 

return codes for routines for accessing document and 

document fragments stored in an external repository. 

Thus, an extremely useful functionality of sentence 

extraction using NLP techniques is exhibited in this 

situation: a developer noted that one of the routines 

contained an incorrect return code, and by using SIFT, 

38 sentences about error return codes out of 46 

descriptions of routines were extracted automatically 

and could be verified for accuracy.  

Álvarez-Macías et al. 
20

 evaluated the performance of 

the application of two data mining algorithms to the 

values of the attributes which comprise a companies’ 

management process, such as staff hiring, staff 

dismissal and staff adaptation, to construct rules which 

measure the influence of these variables on outcome 

parameters like effort assignment, personnel, and 

delivery time. The algorithms tested were based on 

Evolutionary Algorithms, GAR, an unsupervised 

method which builds association rules between the 

variables in projects, and ELLIPSES, a supervised 

classification method which constructs mathematical 

regions for project parameters and determines which 

rules are most appropriate for each region. 

The current paper focuses on the novel application of IE 

methods by specifically extracting information relevant 

to project planning and organizing, and thus the 

associated metrics. The extraction of the objects in the 

current work which refer to size, time, effort and 

resources are an example of an IE task known as noun 

chunk extraction, where the items extracted are noun 

chunks predefined by JAPE grammar rules, which will 

be explained further below. To perform this task, the 

GATE (General Architecture for Text Engineering) 

platform has been incorporated into the platform, and 

the capabilities of the language of GATE, JAPE, have 

been exploited. JAPE can be used to recognize the 

regular expressions contained in the text annotations 

made by GATE. A brief overview of the functionalities 

of GATE will be given, and its accompanying rule 

recognition language JAPE. 
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1.3.1. GATE 

GATE is a NLP architecture specifically designed to 

perform the tasks referred to above, for example, 

Named Entity Recognition and Coreference resolution , 

determining attributes associated with entities, which 

indicate equivalence between entities. However, these 

are just two examples of the functionalities of GATE. In 

fact, it consists of three principal components which 

enable the execution of a host of adaptable language 

engineering tools, whose successful functioning has 

been demonstrated in a number of IR tasks throughout 

literature. 

Despite of GATE is a well know tool that enables NLP, 

it is still present in many recent research projects E.g. 
21,22,23,24

. 

The main elements of GATE are comprised of an 

architecture for language processing, a Java framework 

which forms the backbone of such a system, and a 

graphical development environment which allows 

manipulation of the framework for language engineers 

to build their own personalized language engineering 

tools and processing resources. GATE initially comes 

with a set of built-in processing resources, referred to in 

the platform as ANNIE (A Nearly New Information 

Extraction System). These are linguistic tools which 

have specific language processing functions 
25

, namely a 

tokeniser, gazetteer, sentence splitter, POS (Part of 

Speech) tagger, named entity transducer and an 

orthographic name-matcher.  

The Gazetteer component of ANNIE is particularly 

useful in this architecture, as it consists of a set of 

predefined lists of nouns. Each item in the list has been 

pre-assigned an attribute, for example, organization, 

currency_unit, or manufacturer. The attributes are input 

to JAPE grammars (discussed below). This functionality 

enables the identification of the resources used in 

projects, for example, “IBM Requisite PRO”, or 

“CSW”. 

When documents are processed by GATE, they are 

input to what is referred to as a GATE document 

pipeline, and the language processing tasks are 

performed sequentially. The language used to modify 

the capabilities of the processing resources is called 

JAPE. A description of JAPE is given below. 

1.3.2. JAPE 

Fundamentally, JAPE provides a tool for language 

engineers to define the characteristics of the sentences 

or phrases which they wish to extract in the particular 

application in question. It is a language for matching 

GATE annotations to regular expressions, thus it is 

essentially using pattern matching to construct more 

annotations using finite state autonoma. The patterns are 

defined as rules, a JAPE Grammar, which constitute a 

finite state machine. The rules are invoked on each text 

in sequence when it is input to the GATE document 

pipeline, as previously described.  

In the current architecture, the first step is the clustering 

of the Project History Documents (PHDs) using a 

document clustering technique, an overview of which 

will be provided below. Once the PHDs have been 

grouped, and the input Offer document is grouped with 

the most similar set, the PHD which is most similar to 

the to the Offer document is determined by automatic 

analysis of the sentences which refer to project effort, 

time, and resources. It is the application of JAPE rules 

which allow such a comparison between relevant 

content of the two documents. Therefore, in order to 

extract all of the relevant phrases, the JAPE rules search 

for all possible sequences of annotations which match 

the rules. For the current research, the aim is to 

construct rules for phrases which indicate comparability 

of projects, such as project size, costs, sector, effort, 

time, and resources. Options exist for assigning 

priorities to the application of rules, that is, for example, 

if several phrases match the rule, only the one which 

matches the longest set of annotations from the input is 

accepted. In natural language, such a rule may be 

written as "If the sequence of tokens 'staff', 'hours' is 

preceded by a numerical value annotation, then create a 

new Time annotation for the three tokens" This sample 

rule will match the phrase "200 staff hours" as a name 

of the time involved in the project and annotate it 

accordingly, even if this phrase is not included in 

Gazetteer lookup lists. Equivalently, the same rule could 

be written for the sequence of tokens ‘man’ ‘hours’ 

preceded by a numerical value. This enables extraction 

of all variables which refer to time in hours. Or, for 

example, a similar rule could be used to identify that the 

phrases “6 team members”, “team of 6” and “team size 

of 6” refer to a team size variable. The rules which are 

written here in natural language are converted to a 

formal JAPE grammar.  
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1.4. Document Clustering Techniques 

As mentioned above, the first component of the 

architecture groups the PHDs using a document 

clustering method. A support vector machine (SVM) 

has been used to cluster the documents, however, any of 

a number of clustering methods could be applied to 

perform document similarity measures.  

The first stage of knowledge acquisition and reduction 

of complexity concerning a group of objects is to 

partition or divide the objects into groups based on their 

attributes or characteristics 
26

. 

Document clustering is a form of unsupervised machine 

learning, which given a set of input documents, extracts 

features from the documents and groups the documents 

into clusters based on the presence or absence of the 

features. Document clustering has been defined by 
27

 as 

“Cluster analysis is the art of finding groups in data”. 

Defined formally, D denotes a domain of documents 

and C = {c1, c2, c3, ...c|c|} a set of categories. The pair 

(di, cj) represents (document, category). A Boolean 

value b ∈ {T, F} is assigned for each pair (di, cj) ∈ D × 

C, where the value T indicates that the document di will 

be attributed to class cj, and the value F implies that the 

document will not be assigned to the class 
28

. This 

definition has been defined in the context of text 

classification, where the set of categories is defined a 

priori by the automated classifier user. The essential 

difference introduced by text clustering techniques is 

that classes are not previously defined, instead the 

clustering algorithm constructs the classes based on 

feature frequencies and/or weights assigned to features. 

Examples of machine learning approaches for text 

clustering include bisecting K-means, Support Vector 

Machines, Latent Semantic Indexing, Naïve Bayes, K-

medians. Additionally, these techniques may be divided 

into two groupings: the K-means method and 

agglomerative hierarchical methods. This division may 

also be viewed as the division between partitioning 

algorithms such as k-means or k-medoid, and 

hierarchical algorithms such as Single-Link or Average-

Link 
27

. 

1.4.1. Vector Space Model 

The majority of document clustering techniques which 

have been proposed in the literature apply the Vector 

Space Model 
29

. The vector space model is an algebraic 

model used for information filtering, information 

retrieval, indexing and relevancy rankings. It represents 

natural language documents (or any objects, in general) 

in a formal manner through the use of vectors (of 

identifiers, such as, for example, index terms) in a 

multidimensional linear space. Each document is 

represented by a vector in the term space. The set of 

terms is a predefined collection of terms, for example 

the set of all unique words occurring in the document 

corpus. Relevancy rankings of documents in a keyword 

search can be calculated, using the assumptions of 

document similarities theory, by comparing the 

deviation of angles between each document vector and 

the original query vector, where the query is represented 

as same kind of vector as the documents. 

1.4.2. Neural Networks 

A neural network (NN) model is an artificial 

intelligence framework which is closely related to 

SVMs, as both models involve machine learning. As 

with SVMs, the NN is trained to learn from examples. 

The techniques are similar in the sense that they both 

consist of a black box which can ‘learn’; the feature 

values are the input to the box, and the output, the class 

the text falls into. 

1.4.3. Latent Semantic Indexing 

In the SVM model, frequency vectors are normalized 

for text length and may be allocated importance 

weights. Zipf’s law is the factor that underlies 

normalization and the assignment of weights to features 

in the SVM calculations, as it is a mathematical model 

which assumes that the frequencies of common 

linguistic features in texts are high, and that frequencies 

decrease proportionally. However, even when weights 

are assigned to features, the construction of vectors is 

based on the assumption that the features are 

independently distributed. The existence of semantic 

relations in text such as synonymous and polysemous 

words breaches this assumption. Latent Semantic 

Indexing (LSI) is a model of text categorization which 

attempts to overcome the presence of ambiguous lexical 

relations in texts. Sebastiani 
30

 describes LSI as a 

method of dimensionality reduction by term extraction 

which exploits the inter-relationships between 

synonymous, near-synonymous and polysemous lexical 

relations. It is viewed as a dimension reduction 

technique because it is a similar term extraction model 

to SVMs, but the vectors have a lower-dimensional 

space, as their dimensions are generated from the 
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patterns of co-occurrence in the dimensions of the 

original vectors. The terms extracted represent the 

‘latent’ semantic relations in the texts. 

1.4.4. Support Vector Machines SVMs 

SVMs were alluded as a particular model of machine 

learning. In this technique, which was proposed by 

Vapnik 
31

, the model for classification is generated from 

the training process with the training data. Owing to its 

usefulness, it has been widely adopted in various fields 

of classification problems in recent years, including 

medical diagnoses 
32

, tourism projections 
33

, sound 

processing 
34

 or recommender systems 
35

. 

The SVM algorithm exploits the use of vectors which 

model the distributions of features in texts. Each vector 

is a point in a n-dimensional space (n is the number of 

features) , which can hold either a Boolean value 

signifying whether or not the feature exists in the 

document, or the frequency of occurrence of the feature 
28

. The objective of SVM modeling is to define the 

optimal line (hyperplane) which divides groups of 

vectors into separate categories. In its simplest form, 

SVMs can be used to differentiate two categories. The 

support vectors are the vectors in closest proximity to 

the line. The task is to determine which of these vectors 

best describe the division between the two categories. 

Diederich and Kindermann 
36

 refer to the distance of the 

hyperplane which separates the two categories as the 

maximum interclass distance, the margin.  

SVMs can also be used when points are categorized by 

a non-linear region, which requires a non-linear model. 

Frequency vectors are generally normalized to account 

for text length, and the raw feature frequencies or log-

transformed feature frequencies may be assigned 

importance weights. The primary advantage of SVMs 

for clustering is that they can measure thousands of 

features, if necessary all of the n-grams in the text.  

2. BMR: Benchmarking Metrics Recommender 

The current section describes the architecture of the 

system. The component which provides the initial 

interaction of the customer with the system is the web-

based user interface, which has functionalities for 

uploading two classes of documents: the SPO and PHD. 

HDs may be uploaded at company level. For example, 

the manager of a software development company can 

upload the entire set of PHDs of the company, and 

continue to upload them systematically as new products 

are developed over time, or he can upload a number of 

PHDs which he considers to be related to an Offer 

document he is about to upload. All of the documents 

uploaded are later stored in two separate repositories: a 

rich PHD repository and an SPO repository. Metrics are 

extracted from each PHD during the Natural Language 

Processing phase, and stored in a Metrics Repository. In 

order to clearly illustrate the architecture, the 

repositories have been described as three distinct 

components. However, the three repositories together in 

fact comprise a single repository, and may be 

conceptualized as one repository with three different 

parts. 

Each document which is input to the system, regardless 

of whether it is a SPO or a PHD, is first subject to text 

processing. This is the first step of the algorithm. The 

specific components of the architecture are described in 

Fig. 1, which illustrates the architecture. Mentioned 

architecture consists of the following components: 
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Text processor 

This component converts each input document to plain 

text (including tables or graphics which contain text), 

and extracts the sections of each document which 

contain information relevant for measuring document 

similarity. These sections are then concatenated in order 

to re-construct the document into its final format, prior 

to its input to the GATE NLP pipeline. In existing NLP 

software architectures, often GATE is used to perform 

all text processing required. However, in the current 

architecture, in order to extract relevant parameters, 

specific sections of the PHDs, SPOs, and Metrics 

documents which contain parameters related to project 

comparability are required. Thus, it was decided to carry 

out pre-processing of the documents in order to parse 

only the sections needed for comparison. This also 

contributed to computational efficiency, by reducing 

processing time. Three parts of the document content 

are relevant for extraction: 

a) Description of the Project 

b) Software Production factors such as effort, 

time, resources, costs, and industry sector. 

These comprise the comparability variables. 

c) Text relating to project metrics – those which 

comprise part of the content of the PHDs. The 

specific metrics extracted are later transferred 

to a separate repository containing project 

metrics relevant to each particular document, 

during the Natural Language Processing phase. 

Natural Language Processor 

Each text which is uploaded becomes part of a GATE 

document pipeline. All of the NLP tasks in GATE 

which are required in any particular application can be 

executed on each of the documents in the pipeline in 

sequence. In the architecture, GATE libraries are used 

to perform the following NLP tasks: 

a) Syntactic annotation of noun phrases, using 

GATE’s NP_Chunker 

b) Application of JAPE rules to extract all phrases 

related to project comparability. The only 

comparability factors extracted which do not 

have a numerical value associated with them 

are the variables which describe the industry 

sector. These are annotated noun phrases such 

as “fish stock management application”, or 

“bookmarking web application”. Gazetteer lists 

v
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have been added to GATE with phrases which 

define each sector. The lists have been grouped 

according to EU industry specifications 

(http://ec.europa.eu/enterprise/sectors_en.htm). 

If the industry is not mentioned or has not been 

annotated correctly by a JAPE rule, it is 

omitted. 

The GATE NLP component results in the storage of 

each PHD and each SPO in their respective repositories, 

with an associated list of comparability variables. For 

example, PHD DOCID1 will have a list of variables 

with corresponding values, for example, Variable Q, 

Value 100, Variable R, Value 200, Variable S, Value 

3…Variable N, Value n. Each SPO document will have 

an ID and a similar associated list of variables. 

The metrics from each PHD uploaded are also extracted 

and stored in a Metrics repository. In the current 

research work, this process is referred to as Metrics 

Extraction. The repository will contain a list of metrics 

associated with each PHD, for example, PHD DocID1 

will have Metric 1, Value a, Metric 2, Value b…Metric 

n, value x. 

Comparability Engine 

The annotated documents are the input to a 

comparability engine. In the comparability engine, the 

PHDs are clustered using a text clustering algorithm. 

Each time a PHD is added to the repository, the 

document is clustered with the group of PHDs to which 

it is most similar, through the application of a Support 

Vector Machine algorithm based on lexical content. The 

comparability engine has three main functions: 

a) Clustering of each PHD document using a 

Support Vector Machine 

b) Clustering the input Offer Document with the 

most similar set of PHDs 

c) Gauging comparability of the Offer document 

with each of the PHDs in this set, based on 

comparability variables. 

The output of the execution of the Comparability 

Engine results in the following structure. The metrics 

associated with each PHD have already been stored in a 

metrics repository, as they were extracted from each 

PHD during the text processing phase. Therefore, the 

output of the comparability engine is the PHD which is 

most similar to the input Offer document (based on the 

values of the comparability variables), and its associated 

metrics. The most appropriate metrics from the most 

similar PHD are then recommended to the user by the 

metrics recommender. The metrics engine will now be 

described. 

Metrics Processor 

The metrics processor consists of two components: a 

Metrics Recommender, and a Success Analyzer.  

The Metrics Recommender proposes the metrics for the 

input Offer document to the user, based on the variables 

described above. It is at this point where the novelty of 

the system is exhibited: not only does the system 

recommend suitable metrics, but the user can modify his 

SPO based on the metrics recommended, and a 

subsequent evaluation of the success of the metrics 

suggested for the Offer is performed. This is carried out 

by the Success Analyzer. 

The Success Analyzer can be described as follows. As 

part of the metrics recommender phase, the user 

modifies his Offer document based on the new metrics 

recommended. He then carries out the software 

development process according to the revised Offer 

document, with new values for each variable. This 

results in the production of a PHD. The values of the 

comparability variables for the following documents are 

thus available: SPO (Version 1), SPO (Version 2), and 

PHD (based on Version 2). Thus, it is possible to apply 

an algorithm to perform the following comparisons: the 

similarity of SPO V1 and SPO V2, the similarity of 

SPO V1 and the PHD, and the similarity of SPO V2 and 

the PHD. The metrics in the PHD are then assigned 

weights according to their actual importance in SPO V2. 

The metrics and their corresponding weights are then 

transferred back to the metrics repository. 

A simple mathematical algorithm is applied to 

determine the distance between the comparability 

variables, and thus, the similarity of the variables in the 

documents. For example, it is clearly possible to 

evaluate that two projects with respective team sizes of 

6 and 10 are more similar than two projects of team size 

6 and 150. During the execution of the algorithm, it may 

result from the processing of the values in the PHD 

(generated from Version 2 of the Offer document) that 

in fact the value associated with the metric “New 

Recruitment Rates” in the PHD is high, indicating the 

importance of this metric. This leads to the consequent 

assignment of weights accordingly. 

In future research, it is intended to evaluate the effect of 

a number of weighting schemes on the performance of 

the architecture (E.g. 
37, 38

). 
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The objective of the system is achieved, as the most 

appropriate metrics are recommended based on 

principally numerical comparability variables, and 

subsequently assigned importance weights as a measure 

of their suitability. The weights are continually adjusted 

based on the variables, thus as the volume and range of 

PHDs and SPOs in the repositories increase, the 

appropriateness of the metrics correspondingly becomes 

more refined. 

3. Use case scenario 

The use of the BMR architecture presents two distinct 

use case scenarios, which can be differentiated by the 

type of document under processing. The first use case 

which illustrates the function of the tool is the 

processing of the PHD. The processing of the PHD 

document enables the user to generate a repository of 

metrics and establish the variables associated with each 

document. It also allows the user to process a PHD 

which may be part of a batch of PHDs produced in the 

company, or the result of a project currently being 

carried out in the company, with the objective of 

uploading several documents in order to generate 

accurate data, and keep the repository up to date. The 

second use case scenario enables the user to upload an 

Offer document in order to receive metrics 

recommendations for a prospective project, once the 

first completed version of the Offer is prepared.  

In order to set the scene for the use case, it is assumed 

that the PHD repository is already populated, and that 

the repository of the metrics extracted from the PHDs 

analyzed has been created, including the weights of the 

metrics as a function of their suitability for being used 

in projects. At this point, the company QMECC 

(fictional name) has drafted an offer document entitled 

OD_1. The offer is a document outlining the work plan 

for the parameterization of an ERP (Enterprise Resource 

Planning) system in the environment of an editorial 

company, in particular, focusing on billing and stock 

management. In order to carry out the customized tasks, 

it is established that a group of 7 consultants is required 

(2 senior, 5 junior), lead by a project leader over a 3 

month time period, with a total effort of 1 month per 

staff member, in the case of the project leader, 2 months 

per staff member for each of the senior consultants, and 

3 months per staff member for each of the junior 

employees.  

Using the BMR Graphic User Interface, the document is 

uploaded and temporarily stored on the server, with its 

pending destination being the text processing 

component. The text processor converts the file to plain 

text and extracts the sections of the document which 

contain the details of the comparability variables 

relevant for NLP processing. Thus, the output is a plain 

text file, which contains the relevant sections of the 

SPO. This intermediate product is sent to the NLP 

component, which, in the case of the PHD documents, 

extracts metrics, and in the case of the both the PHD 

and the SPOs, determines the comparability variables 

and their values. Once this process in completed 

(described in the Architecture section), it is established 

which cluster of PHDs is most similar to the SPO. 

Subsequently, the SPO is compared to all of the 

documents in this cluster, in order to determine to which 

PHD it is most comparable. Once the most comparable 

PHD is established, the Metrics Processor makes a 

recommendation of metrics, which it is able to extract 

from the Metrics Repository. The repository contains 

the metrics associated with all of the PHDs in the cluster 

to which OD_1 is most similar.  

With the objective of ensuring traceability of the 

recommendations, not only is the Offer document 

stored, but the metrics which have been recommended 

are also stored. At this moment, using the metrics 

information provided, the user has the possibility to 

incorporate the metrics recommended into his project 

planning, and subsequently upload a new version of the 

SPO. The variables in the new version of the SPO may 

have changed, based on the metrics previously 

recommended.  

Suppose that the metrics relating to staff productivity 

which were suggested have implicated a mayor increase 

in the number of hours required by the project leader in 

client supervision tasks (Metric MT1), corresponding to 

1.5 months of staff hours. This circumstance implies a 

significant additional cost for the company. Based on 

this analysis, the user can incorporate SPO document 

OD_2 to the repository.  

If the offer presented is accepted by the client, QMCC 

has the possibility to reload the system with the PHD of 

the project which it has undertaken. Thus, at this point, 

the system contains OD_1 and OD_2, the PHD and their 

associated variables. OD_2 is uploaded and processed 

by the components in the usual way the system 

processes documents, but with the final objective of 

enriching the PHD repository. It is evident that the 

metrics processing phase represents an extremely novel 
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function. The metrics processor, aided by the output of 

the NLP component, locates and stores the metrics 

extracted from the PHD in the Metrics Repository. The 

subsequent task consists of an examination of the 

success of the metrics specified in OD_1 and OD_2, and 

a comparison with the actual metrics in the content of 

the PHD, which were specified upon termination of the 

project. 

In the current SPO of QMECC, it can be assumed that 

the metric recommended for MT1 was 20 days per staff 

member, while in the PHD, the value transpired to be 19 

days per staff member. Additionally, regarding the 

effort variables, they changed from 1 month per staff 

member in OD_1 to 1.5 months in OD_2, in the case of 

the project leader. However, the PHD indicated that the 

actual number of months for this worker was 1.4. 

Supposing that this was the only metric indicated, the 

Success Analyzer would have the objective to evaluate 

the MT1 metric according to how valuable it was 

considered, and assign a weight accordingly. 

4. Conclusions and future work 

During the last decades, the specification of software 

metrics has arisen as one of the possible solutions to the 

software crisis. Initiatives have been produced to 

extract, structure and apply software metrics in 

organizations based on internal data and external 

projects. In this paper, on the one hand, we have 

presented a novel initiative based on the success of 

software metrics, and on the other hand, on the use of an 

organization’s own information. With this 

approximation, the initiative is based on the data and 

metrics produced in the organization itself, whose 

current situation is reacted to by the recommendation of 

the most appropriate metrics.  

At the point of the development of the framework, one 

of the first decisions which was required to be taken was 

the establishment of a set of metrics which were 

considered applicable. In this way, and due to the 

importance attached to personnel factors, it was decided 

to focus on these factors as those which would be 

recommended, selecting size, time, and cost metrics, 

among others. Particularly, those parameters which are 

a significant indication of the comparability of projects 

and are crucial decision factors for a corporation. 

Numerous possibilities for future research work arose 

during the current research. With regard to the 

clustering of the PHD documents, it is intended to apply 

a supervised learning technique with the categories of 

the PHD documents established a priori, in order to 

measure the effect on the recommendation of metrics. 

Precision and recall measures may then be applied in 

order to evaluate the performance of the categorization. 

It may also be possible to build on 
20

 work and construct 

rules for the values of the variables extracted using a 

genetic algorithm, and use the rules generated to 

recommend metrics, by assigning the most appropriate 

metrics for the rules in each classification region. 

Concerning the extraction of project parameters, 

additional variables which indicate project similarity 

could be extracted to determine their effect on the 

recommendation of metrics, by the inclusion of more 

complex JAPE rules. Additional metrics could be stored 

in the metrics repository in order for the system to be 

able to recommend metrics for a larger range of project 

types. It is also intended to test the application of 

different algorithms for assigning weights to metrics. A 

further objective of future work is to collect and 

evaluate user feedback about their experiences with 

using the system. 
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