
Managing Security Issues in Software Containers: From

Practitioners’ Perspective

Maha Sroora, Rahul Mohananib, Ricardo Colomo-Palaciosc, Sandun
Dasanayakeb, Tommi Mikkonena

aUniversity of Jyväskylä, Mattilanniemi 2, Jyväskylä, 40100, Finland
bM3S, University of Oulu, Pentti Kaiterankatu 1, Oulu, 90570, Finland

cTechnical University of Madrid, Calle Los Ciruelos, Boadilla del
Monte, 28660, Madrid, Spain

Abstract

Software development industries are increasingly adopting containers to
enhance the scalability and flexibility of applications. Security in container-
ized projects is a critical challenge that can lead to data breaches and perfor-
mance degradation, thereby directly affecting the reliability and operations
of the container services. Despite the ongoing effort to manage the security
issues in containerized projects in SE research, more investigations are needed
to explore the human perspective of security management in containerized
projects. This research aims to explore security management in container-
ized projects by exploring how SE practitioners manage the security issues
in containerized projects. A clear understanding of security management
in containerized projects will enable industries to develop robust security
strategies that enhance software reliability and trust. To achieve this, we
conducted two semi-structured interview studies to examine how practition-
ers approach security management. The first study focused on practitioners’
perceptions of security challenges in containerized environments, where we
interviewed 15 participants between December 2022 and October 2023. The
second study explored how to address security issues, with 20 participants
interviewed between October 2024 and December 2024. Data analysis reveals
how SE practitioners address the various security challenges in containerized
projects. Our analysis also identified the technical and non-technical enablers
that can be utilized to enhance security in containerized projects. Overall,
we propose a conceptual model that visualizes how practitioners manage se-
curity issues in containerized projects. We argue that our proposed model

Preprint submitted to Elsevier September 2, 2025

will guide practitioners in making informed decisions to plan, develop, and
deploy secure container systems.

Keywords: Software engineering, software container, container security,
security management, interviews

1. Introduction

In recent years, the reliance on digital services has significantly increased
across multiple sectors, driving significant advancements in digital transfor-
mation. Software-intensive industries such as finance, healthcare, manufac-
turing, and retail have increasingly integrated digital technologies to enhance
efficiency, security, and scalability [1], [2]. Similarly, many public and private
organizations are increasingly adopting software applications to optimize op-
erations and enhance customer experience [3]. This growing dependence on
software applications and the incremental customer demand for new features
has further added to the complexity of software applications, introducing new
challenges in designing, developing, testing, and deploying safe and reliable
software applications. To overcome this issue, containerization has emerged
as a credible solution by improving flexibility, portability, and agility in soft-
ware development and deployment. Containerization encapsulates applica-
tions and their dependencies into isolated environments, ensuring consistent
service delivery across different infrastructures [4].

Despite many advantages over Virtual Machines (VMs), [5], software con-
tainers (mentioned as only ‘containers’ henceforth) introduce significant secu-
rity concerns, such as faulty image, vulnerable configurations, unauthorized
access, and data leakage [6]. These security concerns are considered the main
barriers to a wider container adoption [7]. A thorough investigation of se-
curity issues in containers and their implications is critical for organizations
because it would help them improve their security strategies and ensure the
continuous delivery of software services [8]. Furthermore, investigating secu-
rity practices in containerized environments can enhance trust and encourage
broader adoption [8].

A review of existing software engineering (SE) literature on security con-
cerns in container systems reveals a lack of a holistic view of security manage-
ment in containerized projects. Many studies discuss security challenges in
containers [9], [10], but do not detail the practical challenges that obstruct
security in containerized projects. Although some studies propose frame-

2

works to manage and improve security in container systems [11, 12, 13], the
frameworks often remain impractical for real-world projects as they do not
align with domain-specific requirements. Moreover, studies do not consider
the non-technical factors that affect container deployments, such as human
administration, communication, budget constraints, and customer demand
[14]. These security frameworks do not incorporate the human perspective
in the management of container systems, neglecting the significant role of
humans in software container administration.

Software containers are not fully automated, and they need humans to
administrate the technical aspects, such as configurations, monitoring, and
version control. Usually, security management in container systems focuses
on configuration and testing practices and often does not consider the hu-
man perspective [15, 16, 17, 18]. Including investigations into the human
aspect in security management is crucial because it adds new dimensions
to understanding containerized system security management strategies, such
as planning, strategic decision-making, policy enforcement, and continuous
adaptation to new threats, making container security management more ef-
fective in practice. A comprehensive understanding of security management
in containerized projects will enable industries to develop strategies that en-
hance software reliability.

Building on our earlier work [14], which explored the risks, vulnerabilities,
and their causes in software containers from the perspective of SE practition-
ers, this study provides a deeper investigation into how these practitioners
understand and manage security in containerized projects. Specifically, it
extends our previous findings by investigating both the strengths and limi-
tations of current security management practices of containerized systems as
perceived by practitioners. Our new findings complement the previous study
by highlighting how SE practitioners actively address and mitigate critical
security and vulnerability concerns in real-world containerized environments.

The main research question (RQ) guiding this study was developed by
following the guidelines recommended by [19] and [20], and is as follows:
RQ: How do software engineering practitioners manage security
challenges in containerized projects?

To answer our main research question, two critical aspects needed to be
investigated. The first is to explore how practitioners perceive security issues
in containerized systems in terms of their causes and implications. The sec-
ond aspect is investigating how SE practitioners address these security issues
in containerized projects. Since the focus of this study is on understanding

3

the perspectives of SE practitioners on security management in containerized
projects, we address the main RQ by conducting a semi-structured interview
research approach. This research method facilitates the collection of rich and
in-depth qualitative data [21], which is essential to explore how security chal-
lenges are addressed in ongoing containerized projects from the perspective
of the human actors involved. In addition, a semi-structured interview-based
study is a flexible approach that allows customisation of the questionnaire
to align with the participants’ expertise. Unlike other research methods that
rely on the analysis of published research, such as secondary literature re-
views (SMS and SLR), semi-structured interviews offer the flexibility to tailor
follow-up questions based on the active responses of the participants. This
flexibility makes this approach widely adopted in similar research contexts
within the SE domain (e.g., [22], [23], [24], [25]).

This article makes the following novel contributions to the scientific body
of knowledge on managing container security in containerized projects.

1. The research presents a comprehensive analysis of the perception of
how security is managed in a containerized environment from the per-
spective of software practitioners;

2. We identify the key strengths and weaknesses of security management
practices, highlighting real-world challenges encountered in container-
ized projects;

3. The findings also explore the fundamental (or key) enablers that can
enhance security in containerized environments by combining the tech-
nical and non-technical factors influencing security management.

4. In addition to identifying how practitioners manage container security
challenges, our study revealed notable differences in how security is
perceived and approached across professional roles. By analyzing the
perspectives of practitioners, managers, and academic researchers, we
emphasize the need for context-sensitive security strategies that con-
sider both technical implementation and broader organizational factors.

5. This article also contributes a conceptual model to guide SE practition-
ers in developing robust strategies for managing security in container-
ized projects.

The remainder of this paper is organized as follows. Section 2 presents a
comprehensive overview of software containers and container security. Sec-
tion 3 outlines the research design and the methodology used for empirical

4

data collection. Section 4 details the procedures we followed to analyze and
synthesize the data. Section 5 summarizes the key findings of the study,
while Section 6 discusses their implications for software engineering practice
and directions for future research. Finally, Section 7 concludes the paper by
highlighting its main contributions.

2. Background

This section introduces the background of this research, giving an overview
of software containers, security issues in container systems, and managing se-
curity in container systems.

2.1. Software Containers

Containers are lightweight executable software packages that encapsulate
an application along with its dependencies, including libraries, configuration
files, and binaries, ensuring consistent execution across different environ-
ments [26]. Unlike virtual machines (VMs) that run their operating system
on top of the host system, containers share the kernel of the host operating
system to improve resource utilization [27]. In addition, containers operate
in isolated and controlled environments, which enhances the security and
stability of software applications [28].

The development of software containers begins with creating a container
image. Container images are built in-house or pulled from private registries
managed by organizations or public registries [10] such as Docker Hub 1 or
Amazon ECR Public Gallery 2. After pulling the image, the hosting ma-
chine is configured to allocate system resources, including memory, CPU(s),
and file access, to ensure optimal performance [29]. Additionally, network
segmentation and configuration are required to enable secure communication
between containers and external systems [30].

Deploying the software containers requires a hosting machine to execute
the application in the container image. The container creates an instance
of its image and operates in an isolated environment to [30]. Container
orchestration tools like Kubernetes 3 manage the deployment, scaling, and

1https://hub.docker.com/
2https://gallery.ecr.aws
3https://kubernetes.io/

5

operation of containers in the cluster to provide the service [31]. The deploy-
ment of containers involves executing the application encapsulated within
the container image on a hosting machine. The container instantiates an
image and operates within an isolated environment to prevent conflicts with
other applications [30]. Then, the orchestration tools such as Kubernetes
automate deployment, scaling, and operational management, ensuring high
availability and efficient resource allocation within a cluster [31].

Containers offer numerous advantages to software deployment [32]. One
of the main advantages is their ability to provide portable environments
across different stages of development, testing, and production [5]. Contain-
ers are lightweight and consume fewer resources compared to VMs. Con-
tainers are also scalable; they can be scaled up or down according to re-
source demand [33]. Additionally, containers support microservices architec-
ture models, allowing developers to break down applications into smaller and
manageable components [34].

There are many containerization technologies, such as LXC 4, Docker 5,
Podman 6 and others. LXC is one of the early container technologies that are
used to run multiple isolated Linux systems [28]. Docker is one of the most
popular container technologies. It provides a simplified creation, deployment,
and running of containers [35]. Podman is also a leading container technology.
It is used in high-performance computing (HPC) environments as it offers a
daemon-less container engine [36].

2.2. Security Issues in Software Containers

Security management in containers is considered one of the biggest chal-
lenges for this technology [6]. Considering container security challenges is
crucial to improving container adoption and encouraging container migra-
tion [8], [9]. Consequently, there is a need to comprehend the container
security issues and management as they affect usability, performance and
service availability [10].

Delivering secure service by containerized applications requires embed-
ding security as an element in the development and deployment of containers.
This happens in multiple phases. The first phase is the container image, a
lightweight and executable software package essential for running containers

4https://linuxcontainers.org/lxc/
5https://www.docker.com/
6https://podman.io/

6

[37]. The second phase is the preparation of the container host, including
the infrastructure settings to provide the container with an isolated environ-
ment [29]. The third phase is intra-containers, which is a running form of the
image and lightweight virtualization of the software [38]. The fourth phase
is networking, which facilitates communication with external entities and es-
tablishes internal communication channels [39]. The fifth and last phase is
Runtime, which is a tool used to manage and execute containers to deliver
the service in production [40]. Security decisions within these phases are
critical, as they frame the techniques and methods by which security should
be implemented and configured.

Security issues often arise due to configuration flaws and inadequate secu-
rity practices during container deployment [41]. In the container image phase,
security threats primarily stem from malicious image sources and insufficient
vulnerability scanning. Pulling container images from untrusted registries
allows malicious codes to cause harm to the container system. Ignoring or
insufficient image vulnerability scanning exposes sensitive credentials [42].

Security issues in the container host affect isolation and data protection
in container systems [9]. It basically happens because of insecure configu-
rations, inefficient resource isolation, and host-escalated access permissions.
An insecure container host exposes the container system to buffer overflow,
host exhaustion, unauthorized access, and data breaches [43], [44].

The main causes of security issues within containers are unauthorized
access, misconfiguration, and weak isolation mechanisms [8]. These causes
may lead to Denial-of-Service (DoS) attacks or complete system failures [45]
[46]. Some containerized applications rely on dynamic architectures to man-
age workload scaling. If scaling is not properly managed, it may lead to host
exhaustion [47].

Security issues in container networks and orchestration usually occur be-
cause of insecure external communication with other systems or insecure
internal communication between the clusters. Misconfiguring the network or
the orchestration settings leads to network and orchestration security issues.
Misconfigurations can lead to a privileged network, allowing unrestricted ca-
pabilities to the network. Consequently, unauthorized access to the network
means controlling the nodes (servers, routers, or devices) [48]. Another rea-
son is the poor segregation of the container network, which might expose
sensitive data or make it vulnerable to intercepted network traffic [48].

Security issues during runtime occur because of the development and
production implementation in the same physical environment. It is risky

7

behavior as it increases surface attacks [9]. Runtime misconfiguration also
exposes the container’s potential performance issues that affect stability and
service delivery [49].

2.3. Addressing Security Concerns in Container Systems

Security management in container systems is crucial to protect container
applications. One of the security management approaches is testing. Con-
tainer testing is essential for ensuring the security, efficiency, and reliability
of containerized applications. Container testing is the process of detecting
anomalies that could disrupt the progress of containerized software devel-
opment. Container testing encompasses analyzing container images, config-
urations, container communication, and pipelines [15], [50]. Implementing
comprehensive testing protocols is essential to ensure the robustness and
continuation of container functionality as well as maintain the integrity and
reliability of applications deployed in containers [16].

Another approach to managing container security is implementing secu-
rity practices. Security practices refer to enhancing the security of container
systems through collective processes and techniques [17]. One of the pri-
mary best practices is to use trusted base images and regularly scan them
for vulnerabilities [51], [52]. This helps in minimizing the risk of introduc-
ing security flaws into the container environment. Additionally, employing
role-based access control (RBAC) ensures that only authorized users can
have access [18]. Network segmentation and restricted network capabilities
are crucial practices to limit communication between containers and avoid
surface attacks [48].

Maintaining container systems involves continuous monitoring of con-
tainer behavior for anomalies that could indicate a security breach. Regular
checking of logs can protect container runtime against known vulnerabilities
[53]. Effective secrets management is also critical to secure sensitive informa-
tion. Secrets should not be accessible to all containers, and it is recommended
to be stored in external volumes [54], [14]. Regular security audits and com-
pliance checks help ensure container development and deployment follow the
internal and legal policies to ensure users’ data privacy [18, 55, 56].

Security in container systems faces significant issues in the development
and deployment life-cycle. These challenges can potentially compromise the
integrity and functionality of containerized applications. Security issues arise
from faulty images, misconfigurations in the host machine, network settings,
or container pipelines. Additionally, unauthorized access during runtime can

8

further increase security risks, potentially leading to breaches or service dis-
ruptions. Therefore, effective security management is essential to maintain
the reliability, availability, and integrity of containerized applications and
their services. A review of SE literature on security management in container
systems shows that container security primarily relies on security practices
and rigorous testing. However, human administration can significantly in-
fluence container security, there is a lack of consideration of the human role
in planning, decision-making, and strategy development of security manage-
ment in container systems. Thus, there is a critical need to explore the
human perspective in security management to enhance the effectiveness and
adoption of security practices within containerized environments.

3. Study Design

This section outlines the study methodology, detailing the planning, data
collection, data transcription process, and data analysis approach. In the
following subsections, we describe the research questions and methodology
employed for both studies in substantial detail, wherever necessary.

3.1. Research Questions

Improving security in containerized environments requires a thorough un-
derstanding of how security issues are conceptualized, managed, and imple-
mented in software container projects. Exploring security management prac-
tices in containerized projects will also help to strengthen security strategies
and inform decision-making in container security. Accordingly, this study
aims to develop a clear and comprehensive understanding of security man-
agement in containerized projects.

To comprehensively understand and explore how practitioners manage
security in containerized projects, it is necessary to explore how practitioners
perceive security issues, their causes, and implications in container systems,
and how they address these issues in containerized projects. Therefore, the
main research question (RQ) is addressed by dividing it into two subresearch
questions—RQ1 and RQ2, as follows:
RQ1: How do practitioners perceive security issues in software containers?
RQ2: How do practitioners address security issues in containerized projects?

Accordingly, we conducted two separate interview-based studies to ad-
dress our main RQ. While Study 1 was designed to answer RQ1, Study 2
focused on addressing RQ2.

9

3.2. Research Approach

We conducted two separate semi-structured interview-based studies, ad-
hering to the established guidelines for qualitative research outlined in [57].
The interview questionnaires for both studies were developed based on the
best practices recommended in [58], [21], and [59], which provided a founda-
tion to ensure integrity, flexibility, and consistency throughout the interview
process. To improve the reliability of our methodology and ensure the rigor
of our interview protocols, we followed the interview guidelines proposed by
[58] and the Empirical Standards for interview studies published by ACM
SIGSOFT [60]. For data analysis, we used the coding techniques described
in [61] and conducted a thematic analysis by following the process recom-
mended in [62].

3.3. Research Planning

For both studies, participants were recruited through the authors’ LinkedIn
7 connections and research groups from other partnering universities. We also
recruited participants from a consortium for an ongoing project on software
containers—Quantum Leap in Software Development (QLeap) and through
industries collaborating with the core research team. The interviews were
conducted in English using the Microsoft Teams platform 8. Before start-
ing the interviews, participants were informed of the main objective of the
research. The participants were then asked for their consent to record the
interviews. Each interview lasted an average of 60 minutes. The replica-
tion package with the interview questionnaire for both studies—Study 1 and
Study 2, can be accessed at: https://zenodo.org/records/15630352.

Study 1 : The interviews were conducted between December 2022 and
October 2023. The interview guide consisted of two separate sections. The
first section of questions was intended to collect demographic data from the
participants, such as the country of employment, role/position in the organi-
zation, and related responsibilities, years of experience working with software
containers, and the domains in which the participants developed container
applications. The second section comprised open-ended interview questions
to explore container security issues, their causes, and relevant solutions in
containerized projects.

7https://www.linkedin.com
8https://www.microsoft.com/en-us/microsoft-teams

10

https://zenodo.org/records/15630352

Study 2 : The interviews were conducted between October 2024 and
December 2024. For this study, demographic data were collected using an
online survey to optimize the duration of the interview. It included questions
about the participants’ country of employment, job title, number of software
container projects they had participated in, and the work domain. Whereas,
the actual interview instrument consisted of open-ended questions on secu-
rity practices, testing, logging, monitoring, and human communication. The
interview guide was shared with the participants several days before the in-
terviews, allowing them ample time to review the questions and reflect on
their experiences. This approach was intended to support a more informed
and meaningful discussion during the interview sessions.

3.4. Piloting the Interview Instrument

Two pilot interviews were conducted before both studies to clarify, refine,
and improve the interview questionnaire. The primary objective here was to
assess the clarity and relevance of the questions and to determine whether
participants could understand the core of the questions. The pilot data was
also analyzed to assess the quality and reliability of the data for the final
analysis. However, data from the pilot interviews were not included in the
final data analysis.

The feedback from the participants on Study 1 interview guide was posi-
tive, thus validating the clarity of the questions. While the feedback from the
participants on Study 2 interview guide recommends improving the wording
of two questions for clarity and precision. The first question—How can log-
ging and monitoring help container security? was revised to—In your opin-
ion, how can logging and monitoring help manage container system security?
to encourage a more nuanced response regarding security management prac-
tices. Whereas the second question—How can AI play a role in security
practices to support container security? was refined to—How can AI be em-
bedded in current practices to improve container security? to emphasize the
integration of AI within existing security workflows.

3.5. Participants Sampling

Study 1 : We recruited a total of 15 participants using convenience sam-
pling [63], ensuring a diverse range of expertise in containerized software
development and security. Participants held various roles in the software
industry, including CEOs, security specialists, and software engineers, pro-
viding information from both technical and strategic perspectives. To ensure

11

diversity in organizational culture, security practices, and regulatory envi-
ronments, we recruited participants from Finland, India, Sri Lanka, and the
Netherlands. The participants had SE industry experience ranging from
three to twenty-eight years, with an average of 11 years, representing varying
levels of seniority and expertise. Their experience working with containerized
applications ranged from one to eight years, averaging approximately four
years, ensuring a well-rounded perspective on container security challenges
and best practices. The demographic diversity of the sample (as summa-
rized in Table 1) is intended to improve the generalizability of the findings
in different roles, domains of work, and organizational contexts within the
software sector.

ID Country Role Container
exp. (yrs)

Domain

P1 Finland Developer 5 Higher Education
P2 Finland Senior SW Engineer 6 Gaming
P3 Finland CTO 5 Web Applications
P4 Finland Security Delivery Specialist 2 IoT
P5 Finland Lead Architect 5 Healthcare
P6 Finland Security Engineer 3 Elevators
P7 Finland Team supervisor 6 Telecommunications
P8 Finland Senior SW Engineer 4 E-commerce
P9 Sri Lanka DevOps Engineer 1 Fintech
P10 Sri Lanka CEO 6 Logistics
P11 India CTO 8 Electronic Medical

Record
P12 India Cloud Architect 7 Telecommunications
P13 Finland DevOps Engineer 3 Web Applications
P14 Netherlands Testing Engineer 4 Healthcare
P15 Finland Senior SW Architect 8 Healthcare

Table 1: Participants’ Demographic Data (Study 1)

Study 2 : We sampled a total of 20 interviewees for the second study,
aiming to capture a wide range of experiences and perspectives on the de-
velopment and deployment of software containers. Participants held various
roles, including project coordinator, software designer, software engineer,
developer, tech lead, architecture engineer, team manager, researcher, post-
doctoral researcher, and university professor. This mix ensured the inclusion
of voices from both software engineering practice and research, allowing us
to explore the topic from academic as well as industrial viewpoints. Par-
ticipants were recruited from Finland, Spain, Sri Lanka, India, Colombia,
Poland, and the Czech Republic, reflecting various organizational cultures
and geographical contexts. Their experience with containers ranged from 1
to 10 years, and they had worked on between 1 and 20 projects, with an av-

12

erage of 3.5 years of experience and involvement in approximately 4 projects
per participant. The diversity in roles, level of experience, and background
(as detailed in Table 2) was intended to improve the generalizability and
relevance of the findings in different domains within the SE domain.

ID Country Role Container exp.
(yrs)

Domain

I1 Finland Researcher & Developer 2 Edge computing
I2 Finland Project coordinator 2 Education
I3 Finland Researcher 3 Software ecosystems
I4 Finland PhD & Architecture Engg. 3 Cloud computing plat-

form
I5 Finland Project researcher 2 Academia
I6 Finland Software designer 1 Web service
I7 Spain Software Engg. 2 Order management
I8 Poland PhD & Team Manager 5 Web service
I9 Spain Backend Software Engg. 1 Healthcare
I10 Portugal Application Security Con-

sultant
4 Telecommunications

I11 Estonia Developer 3 Logistics
I12 Czech Republic Web Developer 2 Web Development
I13 Colombia IT Project Manager & Pro-

fessor
10 E-commerce

I14 Finland Postdoctoral Researcher 8 E-commerce
I15 Spain Associate Professor 5 Digital literacy
I16 Spain Researcher & Developer 2 Bioinformatics
I17 India Software Engg. 3 Web service
I18 Sri Lanka Software Engg. 2 Manufacturing
I19 Sri Lanka Tech Lead 3 Web service
I20 Sri Lanka Software Engg. 1 Manufacturing

Table 2: Participants’ Demographic Data (Study 2)

3.6. Data Transcription and Management

For both studies, the audio recordings were transcribed into text using the
automated feature provided in Microsoft Teams. To maintain the accuracy
and efficiency of the transcription process, the first author manually com-
pared the audio files to the automated transcripts produced and addressed
all mistranscripted words caused by accent variations and automated errors
in interviews. Subsequently, the second author randomly chose five tran-
scripts and compared them with the original recordings. We found no major
discrepancies in the transcribed interviews, thus validating the accuracy of
the transcription process. The author team then reviewed and validated the
transcription process by randomly selecting five transcripts. No changes or
revisions were made.

The transcribed files were completely anonymized for both studies to
ensure that the transcripts could not be traced back to reveal the identities

13

of the participants. For Study 1, transcripts were labeled using participant
codes P1 to P15, while for Study 2, they were labeled I1 to I20.

4. Data Analysis

This section outlines the process we followed to analyze the qualitative
data from both studies. We used the thematic analysis approach recom-
mended by [62], which provided a systematic method to identify, analyze,
and report patterns (themes) within the data.

4.1. Data Familiarization

The transcribed files from both studies were uploaded to “Atlas.ti’ 9,
which is known for its advanced coding capabilities that facilitate organiz-
ing, analyzing, and visualizing qualitative data. For both studies, the first
author carefully read all interview transcripts, ensuring familiarity with the
participants’ responses and gaining a comprehensive understanding of the
content. This process facilitated the initial recognition of the main ideas
and potential themes of the data. The research team discussed the potential
coding approaches/schema to maintain rigor and consistency in the coding
process. The research team confirmed that the most relevant aspects of con-
tainer security were adequately captured. However, in Study 2, the first and
second authors did a second round of reading due to the large volume of
data, to better understand the data and improve the initial coding ideas
before discussing the coding schema with the research team.

4.2. Generating Codes

To maintain the rigor and scientific accuracy of the qualitative analy-
sis, we followed a similar coding process for both studies. The first author
systematically coded all transcripts using “Atlas.ti”. The interviews were
analyzed line by line using an inductive coding approach [61], ensuring the
rigor and reproducibility of the data analysis. The first author assigned
descriptive codes to each quote (henceforth known as ‘data segment’). To
ensure the accuracy of the coding process, the second author independently
reviewed and validated the assigned codes, ensuring that the codes reflect
the content of the data segments. Consequently, the entire author team re-
viewed random subsets of the data segments and related codes and validated

9https://atlasti.com

14

the coding process. No major refinements or changes were made. At the end
of the coding process, Study 1 resulted in 227 data segments. For Study 2,
data saturation was reached after the sixteenth interview, indicating that no
new codes emerged thereafter, with a total of 310 data segments.

4.3. Forming Themes and Categories

To increase the level of abstraction and to better understand the phe-
nomena under investigation, the identified codes were grouped into themes in
both studies. These themes were developed as a high-level conceptualization
of multiple codes grouped to describe the significant aspects of practitioners’
experiences with container security issues. The first author grouped the rel-
evant codes into themes, after which the second author reviewed and refined
the themes. The entire author team then confirmed the themes.

To develop an in-depth understanding of the findings, we grouped the
themes into higher-level categories in both studies. Categories in this research
context are higher-order themes that classify multifaceted themes based on
commonalities to understand how container security issues are perceived and
managed. To form these categories, the first and second authors collabora-
tively analyzed the themes to identify patterns of similarity and difference.
The analysis resulted in categories that capture the broader dimensions of
container security management.

4.4. Developing the Model

Building on the identified codes and themes, we developed an initial con-
ceptual model (see Fig. 1) to represent the interconnections between key
container security concerns from the perspective of practitioners. This model
illustrates how various aspects of container security, including configuration
practices, tool usage, organizational influences, and perceived risks, interact
and influence one another in practice. The development process involved
multiple iterations and collaborative refinement between the author team to
ensure the coherence and representativeness of the empirical findings.

Whereas, Fig. 2 presents the refined and extended version of the model,
which integrates themes from both Study 1 and Study 2. This consolidated
model offers a more comprehensive view of the interrelationships among criti-
cal aspects of addressing container security issues, as well as the key enablers
for improving security management in containerized environments. Over-
all, the model provides a synthesized understanding of how practitioners

15

approach, adapt to, and manage container security challenges in real-world
projects. The two models are explained in detail in Section 6.

5. Findings

In this section, we report the findings of the analysis of the data collected
from interviewing practitioners on the management of container security in
containerized projects. Each theme, in the following subsections, is supported
by providing at least one sample quote from the data to manage the space and
maintain readability. Furthermore, a consolidated spreadsheet containing all
categories, themes, codes, and supporting quotes for both studies is available
as part of the replication package, which can be accessed here: https://

zenodo.org/records/15630352.

5.1. Study 1—Practitioners’ Perspective on Container Security Issues

To manage security issues in containerized projects, we must first under-
stand and explore how practitioners perceive security issues in containers.
This subsection focuses on the security patterns of container security issues
and implications from practitioners in containerized projects. The identified
data segments and themes are further categorized into patterns that support
container security and patterns that require improvements. Table 3 provides
a consolidated view of categories, themes, and relevant codes.

5.1.1. Strengths

Strengths in this research context refer to the approaches and practices
that practitioners use to improve the security of containers throughout the
system life cycle. Our analysis identified five strengths employed in con-
tainerized projects—Container security is a chain of dependencies, Prefer-
ring automation, Common understanding of the security issues, Considering
non-technical causes, and Reliance on tools.

Container Security as a Chain of Dependencies

Practitioners comprehend container security as a life-cycle process, where
each phase influences the security of subsequent stages. Consequently, secu-
rity measures implemented at one stage directly affect the overall security
posture of containerized applications. As one practitioner explained “If one
part of the container goes down, it might cause problems with the others

16

https://zenodo.org/records/15630352
https://zenodo.org/records/15630352

Categories Themes Codes
Strengths Container security is a chain of dependencies Containers are integrated pieces

Delayed security implications
Preferring automation Automation preference

Human mistakes
Common understanding of the security issues Image issues

Host issues
Intra-Container issues
Network issues
Runtime
Recurring security issues

Considering non-technical causes Technical causes
Managerial causes

Reliance on tools Configuration management
Code quality
Monitoring

Weaknesses (Only) Experience-based knowledge Classic issues
Well-known issues
Unknown issues

Uncertainty about improving security practices Volume conflict
Layered approach conflict

Lack of standardisation and guidelines Lack of standardisation
Lack of guidelines

Unclear resilience time Undefined resilience time
Average resilience time

Container security is conditional Conditional security
Unconditional security

Table 3: Summary of Thematic Analysis (Study 1)

as well” (P14), underscoring the interconnected nature of container compo-
nents. Securing containers requires diverse expertise in coding, cloud main-
tenance, and network security to protect the entire life-cycle. Practitioners
emphasize expertise collaboration to clarify and plan interdependent config-
urations in container deployment. Many vulnerabilities remain undetected
until deployment, often revealing issues through irregular system behavior
in production, as one of the participants noted “Whenever we pull images,
we don’t know if it is actually secure, and we will never know until some-
thing bad happens” (P2). Therefore, collaboration among experts during the
development and deployment phase plays a crucial role in ensuring a secure
and stable production environment.

Preferring Automation

Automation in container systems aims to eliminate human involvement in
managing, monitoring, and orchestrating containers. According to our find-
ings, security issues often arise from poor configurations in the container
development life-cycle. To mitigate risks, practitioners advocate automated

17

solutions over manual configuration to maintain container security, as one
practitioner pointed out “If there are any security automated tools, they will
be better than humans” (P13). While tasks like base image selection may
require manual input, automation can enhance orchestration setup, CI/CD
pipeline building, system monitoring, and testing, reducing human errors, as
one of the participants explained “Usually developers want to do tasks as fast
and easy as possible, meaning insecure shortcuts in most cases” (P3).

Common Understanding of the Security Issues

Container security issues involve risks and vulnerabilities that can arise at
any life-cycle phase. Risks can be attacks that exploit system weaknesses,
while vulnerabilities arise from design flaws or misconfiguration. We noticed
that practitioners have shared knowledge and a deep understanding of the
major categories of risks and vulnerabilities in container systems, includ-
ing image, host, intra-container, network, and runtime. Some of the example
quotes that reflect the major categories of risks and vulnerabilities are “Yeah,
if you’re using the outdated base image, there will be vulnerabilities that need
to be fixed” (P1) and “The runtime security issues mostly happen near the
dependencies, as I previously said” (P8). This knowledge helps reduce the
likelihood of risk and potential vulnerability exploits. Additionally, prac-
titioners had similar opinions about most recurring security issues. They
agreed that misconfiguration issues are the most recurring and pose a signif-
icant threat to container security, as one of the participants said “Ohh, the
most recurring issues are definitely misconfigured containers” (P6).

Considering Non-Technical Causes

Practitioners were aware of technical triggers for container security issues,
emphasizing how misconfiguration can lead to security breaches, as antici-
pated. One of the participants explained “I think the main causes are lack
of knowledge and tooling to scan containers, applications, and codes ” (P4),
explaining an example of the technical triggers for security issues. Surpris-
ingly, some practitioners have pointed out other non-technical factors, such as
inadequate team communication and poor organizational and project man-
agement, as one of the participants noted “Of course, issues should be fixed
as fast as possible and communicated. But always, there are issues with com-
pany policies and project management on how they tackle the issue” (P14).
Practitioners believe that non-technical factors can contribute to security

18

vulnerabilities. They believe that management challenges pose risks as well
as technical challenges. While development and deployment issues can be
addressed once identified, problems such as team miscommunication or bal-
ancing the technology stack with project requirements within the constraints
of the customer’s budget are more complex, as one of the participants ex-
plained “Clients don’t care about official images. They need the minimum
resources and the best output and security” (P8).

Reliance on Tools

Practitioners employ many tools across various phases of the container life
cycle. Practitioners utilize various open-source, licensed, and proprietary in-
house tools. However, practitioners have a heavy reliance on tools, many of
them are not satisfied with the current tool plans. For instance, one par-
ticipant mentioned that “We are planning to use Red Hat Advanced Cluster
Security for Kubernetes, it was a matter of discussion in our last meeting.”
(P10), presenting the future plans on security tools. Some practitioners also
presented their companies’ future plans to improve security tooling strate-
gies to elevate security levels. Moreover, practitioners emphasized the cau-
tion of human administration in tool management. While tools perform
their designated function, the results depend on the understanding of the
tools’ capabilities and their proper implementation and administration, as
one practitioner cautioned “Tools are not smart enough to detect new issues,
we need to manage them” (P9).

The tools employed are used for purposes including code quality, identi-
fying vulnerabilities in container images, and managing dynamic and static
scanning of container systems. Tools serve to mitigate vulnerabilities dur-
ing both the building and deployment phases. Additionally, practitioners
utilize tools to manage infrastructure configuration and define infrastruc-
ture through declarative configuration files. Monitoring tools also track sys-
tem metrics and behavior and visualize system data on the front end—e.g.,
“Grafana and Prometheus are used for monitoring system metrics” (P9).

5.1.2. Weaknesses

Weaknesses in this research context refer to existing approaches used
to manage container security and expose the system to potential risks. Our
analysis identified five weaknesses employed in containerized projects: (Only)
Experience-based knowledge, Uncertainty about improving security practices,

19

Lack of standardisation and guidelines, Unclear resilience time, and Con-
tainer security is conditional.

Only Experience-Based Knowledge

Experience-based knowledge in this study context refers to practical knowl-
edge gained through exposure to the complexities and challenges in container-
ized projects. The analysis of interview data highlights a significant variation
in practitioners’ comprehension of container security issues. Practitioners’
knowledge is shaped by individual experiences and the specific demands of
their respective fields, not by academic or educational background.

Interestingly, professional discussions about the security of containerized
applications were quite different, even within the same domain. Some inter-
viewees assumed that containers were secure by default, and their evidence
was that they had not personally encountered a security issue—e.g., “Nor-
mally we don’t have any issues, I can’t recall any serious security issues”
(P15). Other respondents assumed container security was challenging based
on the multiple incidents they faced, which sometimes remain unresolved.
Quotes such as, “We did know how this problem happened, our team deployed
the containers as usual, but it just happened” (P10), and “For example, I
have gone through a problem about how to pass secrets inside the container.
If you do it incorrectly, you can expose them via environment variables” (P4),
which supports this idea. Most discussions about container security discuss
the technical aspect, and faulty configuration was frequently mentioned as
a key security risk, similar to this opinion “There are lots of places where
information can be exposed and you can get access to a system or find out
about how it’s running” (P7), while few prioritize security concerns specific
to their domain.

Uncertainty about Improving Security Practices

Security-improving practices aim to enhance overall system security without
addressing specific issues, unlike mitigation techniques that focus on resolving
particular problems. Common practices include selecting secure images, con-
trolling authentication, monitoring network traffic, and managing container
development and deployment.

Upon deep analysis of the application of security practices in the con-
tainer development life cycle, we noticed a conflict in understanding some
security practice outcomes in container systems. An example is using con-

20

tainer volumes, which are external storage, to save sensitive files. Practition-
ers supporting this practice claim it is important to store sensitive services
away from containers to avoid the implications of unauthorized access, as one
practitioner explained “I would keep the container stateless and use volumes
to reduce risks” (P12). In contrast, practitioners against it claim that using
volumes increases the risk exposure on the threat tree, as another practitioner
explained “Let’s say you mount the root partition of a Linux machine, you
mount it to the container. The volume mount creates a direct link between
the host’s file system and the container, so whatever is mounted becomes
accessible inside the container” (P2).

Lack of Standardization and Guidelines

Practitioners complained about the lack of documents describing the best
practices and systematic protocols for container deployment. They explained
their complaint that the available security guidelines are general and do not
consider the container infrastructure in terms of sharing resources and the
dynamic nature of containers, as one participant explained “We do not apply
container security guidelines in our company, but we have a kind of generic
guidelines” (P12). Moreover, the security tools and orchestration platforms’
best practices and tools are rarely available. Practitioners also emphasized
the need for inter-organisational standards for implementation and deploy-
ment processes, automating CICD pipelines, disaster recovery plans, and
security policies, as one participant noted “Standardization is not really used
for now, but like it’s an ongoing process” (P5).

Unclear Resilience Time

Resilience time refers to the duration required to address container security
issues. Many practitioners noted that it is difficult to specify a fixed time
frame for resolving such issues. It depends on the nature of the security issue
and the required experience, as one of our participants noted “Resilience time
depends on the product’s nature and the customer. It could be anything from
one or two days to one or two years” (P7). However, some practitioners
estimated the acceptable time frame 4 hours to one day. The inability to
determine a precise resilience time impacts the security and stability of the
system.

21

Container Security is Conditional

Practitioners deeply believe that containers can be secure enough to support
software deployment, as one participant explained “Containers have software
delivery mechanisms, they are secure enough” (P7). At the same time, they
put conditions in place to ensure security, like embedding security as an initial
element of the development and maintaining good human administration
for the container system, as one of the participants noted “think if all the
considerations and risk points are taken containers can be secure” (P2).

To address RQ1—How do practitioners perceive security issues in soft-
ware containers?—we analyzed the responses of practitioners based on
how they perceive security issues in containerized projects. Our findings
indicate that SE practitioners perceive container security as a dependent
decision throughout the container life cycle. Performing effective secu-
rity requires properly implemented configurations, automation, security
practices, and system integration. SE practitioners emphasize that both
technical and organizational factors are essential, as understanding secu-
rity issues is based on direct exposure to real-world security challenges.
While SE practitioners demonstrate strong awareness of common cate-
gories of vulnerability, they also highlight concerns about poor team com-
munication, the absence of clear guidelines, limited standardization, and
uncertain resilience expectations. SE practitioners do not consider con-
tainers inherently insecure; rather, they emphasize that effective security
depends on proper planning and the use of suitable tools, automation,
and consistent communication throughout the container life-cycle.

5.2. Study 2—Addressing the Concerns in Container Security

Effective container security management necessitates the identification of
key enablers that enable practitioners to address security issues. Recogniz-
ing these enablers provides a foundation for strengthening security measures
and ensuring ongoing enhancements in containerized environments. This
section reports the critical enablers for addressing container security issues,
categorizing them into technical and non-technical factors to provide a com-
prehensive perspective on security advancements in containerized projects.
All the categories, themes, and codes are summarized in Table 4.

22

Categories Theme Codes
Technical Enablers Risk Identification Ways to identify risks in container systems

Main challenges in risk identification
Security practices support risk identification

Container Testing Testing types
Challenges in container testing
Testing can improve security practices

Security Practices Strategic security practices
Proactive security practices
Security practices support security

Logging and Monitor-
ing

Role of logging and monitoring

Logging and monitoring affect container security
Logs are not fully reliable
Logging and monitoring guide improvements in container
security

Artificial Intelligence AI helps in knowledge sharing
AI assists humans to achieve security
AI helps in automation
AI helps in testing and analysis
Limitations and concerns of AI

Non-Technical
Enablers

Sharing Knowledge Improving the knowledge about automation in containers

Improving the knowledge about tools and best practices
Improving the standards and guidelines
Common shared knowledge about container issues

Human Collaboration
and Communications

Importance of human collaboration

Maintaining human collaboration

Table 4: Summary of Thematic Analysis (Study 2)

5.2.1. Technical Enablers

Technical enablers are technology-related factors that support and ad-
dress security issues in containerized projects. The analysis identified five
technical enablers: risk identification, testing, logging and monitoring, secu-
rity practices, and AI.

Risk Identification

Risk identification refers to recognizing and addressing potential vulnerabil-
ities and threats that affect container systems, as a practitioner explained
“Risk identification involves looking for updated packages and base images,
then referring to public CVEs” (I17). Risk identification can be achieved
by detecting abnormal system behavior through tools or human monitoring,
or by combining both. Effective risk identification in software containers in-
volves continuous updates, anomaly detection strategies, and tooling plans,
according to another participant “We use scanners to detect the risks in the

23

images and dependencies, so we can make quick updates” (I14).
Risk identification in container systems faces many challenges. These

challenges arise from the complexity of container systems design and the
combination of static and dynamic elements operating together. One of the
main challenges in risk identification is the continuous need for updated se-
curity tools and the need for effective security tool administration to address
both known and unknown anomalies. Container system complexity is also
another challenge in container systems. One participant highlighted this
issue “One of the biggest challenges I’ve faced is the complexity of the dy-
namic nature of containers. Containers are designed to spin up and down
quickly, which makes it hard to keep track of what’s running and whether
it’s vulnerable” (I19). The integration between containers, hosting machine,
orchestration platforms, and user inputs makes it hard to trace the security
issues in the threat tree.

Container Testing

Container testing is essential for ensuring containers’ security and perfor-
mance. Although testing increases the workload on development teams, it
is crucial to identify and mitigate security risks before they can affect the
entire system. Container systems require different types of testing to ensure
a secure performance for container systems, such as unit testing, integration
testing, stress testing, and end-to-end testing, as one of the participants ex-
plained “Stress testing is crucial. If you create an API, you should ensure
it works as expected and doesn’t give out unwanted information” (I4). Unit
testing involves testing that individual components are functioning properly
on their own. Integration testing focuses on verifying the integration of con-
tainer components. Stress testing checks the performance stability under a
heavy workload. End-to-end testing ensures that the application will perform
as expected in a production environment.

Container testing faces many challenges in container systems. One of
the challenges that most industries are facing is that developers are taking
responsibility for testing container applications they are developing, instead
of a separate testing team, due to budget constraints. This places additional
load on the developers, as they must test the functionality in addition to
security without a clear knowledge of the security metrics. Another challenge
is the difficulty of managing testing within a large number of containers on
the same host, making it hard to test and audit the container dependencies

24

effectively. One participant described testing as “Testing itself grows very
complex in this dynamic environment, especially the testing setup” (I6).

Testing results of containerized applications offer valuable insights for
enhancing security. Testing results help to provide statistics on recurring
security threats in container systems. The identified threats from the testing
process should be thoroughly examined to determine effective mitigation and
recovery strategies. These results from testing processes should be considered
and translated into practical security improvements in container systems, as
noted by one of the previous participants “Testing results give you confidence
that everything works as intended if combined with security practices” (I6).

Security Practices

Security practices in container systems are a comprehensive set of planned ac-
tions and strategies that aim to protect applications, infrastructure, and data
in a container environment. Security practices are supposed to be proactive
and continuous to mitigate threats in their early phases. Proactive secu-
rity practices must cover various levels, including image, code, application,
infrastructure, ports, nodes, and user inputs, as one practitioner described
“Security practices involve maintaining and managing systems to avoid vul-
nerabilities and exploits” (I17).

In addition to proactive security practices, strategic security practices are
essential for ensuring the protection and integrity of container systems. It
must include an integrated set of procedures, tools, and strategies to protect
the container system. Strategic security practices ensure that security is em-
bedded into the development process and aligns with DevSecOps principles
for maximum protection. Strategic security practices should be tailored to
the specific needs of each project to ensure security is effectively integrated
into the development life-cycle, as explained by one participant “Security
practices are strategies, tools, processes, and various things like that” (I6).

Following proactive and strategic security practices provides a structured
approach to managing security in container systems. It provides a plan for
implementing security in container systems that can be tailored according to
the customer’s needs and available budget. Moreover, it schedules defined
time for regular auditing and vulnerability assessments that minimize threat
exposure, as one participant emphasized “Security practices help manage
container security by applying measures such as image scanning, enforcing
least privilege access, controlling network traffic, and ensuring proper config-

25

uration of container orchestration platforms” (I16).

Logging and Monitoring

Logging and monitoring are continuous processes of collecting and analyz-
ing data about the system’s behavior, including errors, activities, resource
consumption and performance. Logging and monitoring support container
security in many ways. It helps to identify security issues and track their
origin source, whether it is a user, system element, or container application.
It provides a real-time overview of the running system to evaluate threats
before they extend to other system elements. Moreover, it alerts the security
team about users’ failed logging attempts and the credentials that are ex-
posed in log files, as one participant noted “Practices like centralized logging,
log persistence, policy enforcement, and monitoring ensure a certain level of
security in containers” (I3).

Unauthorized access is one of the major risks that affect the reliabil-
ity, integrity and confidentiality of the container logs. Therefore, logging and
monitoring security practices such as access control and encryption are essen-
tial to mitigate unauthorized access. Ensuring the reliability of the logs’ data
requires continuous updates to the container systems’ dependencies, security
practices, and security tools, as another participant informed “Logging and
monitoring system is really important to prevent unauthorized access” (I10).

Artificial Intelligence

Artificial intelligence (AI) plays an important role in addressing security is-
sues in container systems. It can be embedded in various security aspects
of container systems. One of the main aspects of AI being a key player in
container security is testing. Tools like Docker Scout 10 and Trivy 11 are
using AI for unit testing in addition to their original function as vulnerabil-
ity scanners. AI helps runtime security by detecting abnormal behavior in
container logs, as one participant described, “AI helps to provide the project
status, understanding dependencies, and identifying main issues that need to
be resolved” (I4).

AI can strongly support security management in container systems. AI

10https://docs.docker.com/scout/
11https://trivy.dev/latest/

26

can automate security practices to avoid human mistakes, for example, AI
can automate YAML files— a human-readable data serialization format used
for configuration files— and image code modification according to the secu-
rity guidelines. AI can also be used to monitor, assess risk, and check logs to
detect patterns and anomalies. Some AI tools like CrowdStrike 12 help sup-
port anomaly decisions by prioritizing vulnerabilities in container systems.
AI is also used to enforce security policies; for example, Aqua Security 13 is
used to enforce container runtime security policies and block unauthorized
processes in container systems, as informed by one of the participants “AI en-
hances container security by automating tasks such as vulnerability scanning,
anomaly detection, threat intelligence” (I16).

AI helps improve communication and knowledge sharing among the de-
velopment team. It can improve project collaboration and communication
by summarizing meetings, tracking progress, transcribing discussions and
creating project documentation. AI can also help at the foundational level
for new employees’ onboarding by mimicking a trial-and-error environment
and giving guidance when needed to enhance learning and implementation,
as one participant explained “There could be some kind of tool that gathers
discussions and forms a list of requirements of what is needed and what has
been discussed” (I7).

Despite the significant benefits AI can introduce to container security,
it is associated with serious concerns. One of the main concerns is that
developers use AI heavily in code generation, which introduces the potential
to generate malicious code or expose sensitive data. Another concern is that
the effectiveness of AI security solutions depends on the expertise of their
users. If the user lacks experience, the outputs of the AI security solutions can
be misinterpreted or improperly applied, leading to security vulnerabilities,
as warned by one of the participants “There could be numerous risks that AI
poses that our current security measures are not able to address or identify”
(I5). Hence, AI should be used as a tool under the supervision of experienced
professionals to ensure the reliability of security solutions.

12https://www.crowdstrike.com/platform/cloud-security/
13https://www.aquasec.com/

27

5.2.2. Non-technical Enablers

The non-technical enablers are the human-based enablers that help to
address security issues in containerized projects. The data analysis provided
two main non-technical enablers for container security: knowledge sharing
and human collaboration and communication.

Sharing Knowledge about Container Security

Enhancing knowledge sharing in container security requires a deeper under-
standing of the challenges that practitioners face in container security. One
of the challenges that requires more knowledge sharing in container systems
is tools and their best practices. Improving knowledge about tools and their
best practices needs trusted and comprehensive resources. While courses are
usually recommended to learn more about tools and their best practices, they
can help with foundational knowledge. For more advanced knowledge, prac-
titioners recommend reading project documentation that provides valuable
knowledge on tools and their best practices, as one participant informed “It
would be useful to know the characteristics of tools, such as the effort required
to integrate them and their benefits” (I1).

Another concern that requires increased knowledge sharing is the secure
implementation of automation in container systems. Practitioners recom-
mended a balanced approach to applying secure automation in container sys-
tems, where routine tasks can be automated, combined with human admin-
istration and monitoring. Furthermore, practitioners emphasize the impor-
tance of sharing knowledge about automation, such as downloading libraries,
managing caches, and setting up initial infrastructure to reduce manual ver-
ification, as one participant noted “Better knowledge on container security
management automation is needed. Utilizing AI and predictive scaling could
be future improvements” (I6).

An alternative approach to enhancing shared knowledge about vulnera-
bilities in container systems is utilizing open-source vulnerability databases.
Vulnerability databases such as CVE 14 and Snyk 15 help to identify, track,
and mitigate vulnerabilities within container systems. In addition to vulner-
ability databases, there are other sources of knowledge about vulnerabilities,
such as workshops, webinars, committee meetups, and recorded videos, as

14https://www.cvedetails.com/
15https://security.snyk.io/

28

one participant explained “There are many databases for container vulnera-
bilities, but not everyone uses them” (I1).

Another effective way to share knowledge about container security is
through training programs, where professionals share personal experiences,
lessons learned, and insights into how these experiences have influenced their
approaches to implementing security in containers. Practitioners believe that
these valuable insights should not be confined to training programs only. In-
stead, they should be shared more broadly through collaborative platforms,
blogs, and documented use cases to make knowledge accessible to a wider
audience, as one of the participants suggested “We have lots of training about
network security and general security practices, but not at the container se-
curity level. It would be nice to have such training as well” (I14).

Human Collaboration and Communication

Effective human communication and collaboration are essential to success-
fully implementing and managing container security issues. Collaboration
among teams, including developers, network engineers, cloud experts, and
hardware specialists, ensures that all elements of the container system work
cohesively. Clear communication regarding the implementation and config-
uration of each phase in the container life-cycle helps teams avoid poten-
tial configuration inconsistencies and mitigate potential security risks, as
explained by one participant “Good communication is essential to know the
project progress, so when working in a team, we do not have to see every line
of code in the pull request” (I18).

Maintaining human communication and collaboration requires regular
team meetings as well as accessible communication channels. Regular meet-
ings, whether daily scrums or weekly sync-ups, help keep everyone informed
about ongoing tasks and issues. Accessible communication channels are also
essential for individual discussions, as one of the participants emphasized “All
practices involve human capital, whether it’s monitoring, logging, deploying,
or fixing attacks. That is why it has to be maintained” (I5). Industries
use various communication channels, such as Slack 16, Microsoft Teams, and
WhatsApp groups 17, to ensure that all teams are updated on urgent matters.
Overall. human collaboration should be actively encouraged to ensure that

16https://slack.com
17https://www.whatsapp.com

29

all team members are involved and contribute towards a secure container
system implementation.

To answer RQ2—How do practitioners address security issues in con-
tainerized projects?—we analyzed the responses from participants on how
to address security issues in containerized projects. Our findings reveal
that practitioners utilize both technical and non-technical enablers to
address security challenges in containerized systems. From a technical
perspective, they highlight the critical role of security practices, compre-
hensive testing, continuous logging and monitoring, and the integration
of AI to support automation, anomaly detection, and risk analysis. These
enablers are fundamental for identifying vulnerabilities and ensuring the
security of container system components. On the nontechnical side, en-
ablers such as knowledge sharing, effective team communication, and
collaboration are viewed as essential complements to technical enablers.
Practitioners consider these nontechnical enablers vital for maintaining
security throughout the container life cycle. Overall, the findings sug-
gest that addressing security issues in container systems depends on the
integration of both technical and non-technical enablers in the implemen-
tation life-cycle of containers.

5.3. Diverse Stakeholder Perspectives on Container Security Management

Although the primary objective of this study was to investigate how
practitioners manage security challenges in containerized projects, we also
observed notable variations in how different respondents perceived and ap-
proached container security management. To better understand these differ-
ences, we classified participants according to their professional background.
Consequently, we present the perspectives of three distinct groups—technical
practitioners, managers, and academic researchers, each offering unique in-
sights into the security management in containerized projects.

The technical practitioners in this study are those who are directly in-
volved in the design, implementation, and deployment of containerized ap-
plications. Their roles include developer, senior software engineer, and se-
curity delivery specialist. Building on the previous discussion, this group
emphasized a hands-on, implementation-focused perspective on container se-
curity management. They view security management primarily as a matter

30

of addressing practical challenges, such as configuration errors, weak isola-
tion mechanisms, and network access controls, that can impact the avail-
ability and stability of containerized systems. technical practitioners gener-
ally expressed confidence that container security is achievable with the right
practices in place. This includes proper configuration, careful integration of
components, and the use of specialized security tools to detect potential vul-
nerabilities. Overall, they demonstrated a high level of trust in containers as
a secure and reliable technology for software deployment, as one participant
noted—“It’s all about how you use containers. If you have all the security
practices in place, there are no issues with container security in general”
(P12). Similarly, another participant noted “Containers are secure, without
much effort. You need to set the right configuration, then you need tools for
monitoring containers and expertise to understand what is and isn’t supposed
to be happening between containers” (I1).

The managers group in the context of this analysis comprises participants
responsible for the planning, coordination, and strategic decision-making in
containerized software projects. Their roles include CTO, team supervisor,
and CEO. In contrast to Technical Practitioners, managers perceive con-
tainer security as a multifaceted and inherently challenging task. While
they recognize the importance of technical safeguards, they place equal—if
not greater—emphasis on non-technical factors that influence security out-
comes. These non-technical considerations include budget-driven trade-offs,
customer demands, and organizational priorities that may lead to security
being given lower priority in favor of speed or cost-efficiency. For exam-
ple, managers highlighted how pressures for rapid deployment often compro-
mise secure development practices. From their perspective, effective security
management in containerized environments depends not only on technical
controls but also on adequate resource allocation, policy enforcement, and
alignment with broader organizational goals.

Overall, managers conveyed a more cautious and sometimes skeptical
view of container security management. Despite implementing best prac-
tices and using security tools, they acknowledged persistent limitations and
residual risks. As one participant reflected: “Security is not perfect actu-
ally because we encountered issues even with all those security tools”(P7),
and another participant shared a similar opinion “The security landscape is
evolving a lot, and people don’t spend time looking for new risks. In most
scenarios, we don’t know about the threat until it happens” (I2).

Whereas, the academic researchers group in this study consists of partici-

31

pants engaged in the systematic study, analysis, and exploration of container
security. Their roles include researcher, postdoctoral researcher, and project
researcher. Compared to technical practitioners and managers, academic
researchers adopt a broader and more forward—looking perspective on con-
tainer security management—one that integrates technical innovation with
organizational and socio-technical considerations.

They emphasized the importance of developing robust security practices
alongside fostering organizational collaboration, knowledge sharing, and the
creation of practical, evidence-based guidelines. In particular, academic re-
searchers highlighted the need to investigate underexplored aspects of con-
tainer security, including the emerging and increasingly prevalent use of AI
in the development and operation of containerized systems. Although not
dismissive of AI, academic researchers expressed a cautious position. They
viewed AI as a double-edged sword that is capable of accelerating develop-
ment and assisting practitioners in identifying vulnerabilities but also pos-
ing new risks if adopted uncritically or without sufficient human oversight.
Their concerns centered on the potential for unknown vulnerabilities and
over-reliance on AI-driven tools, which may not yet be mature or fully trans-
parent.

Overall, academic researchers expressed a degree of skepticism about the
future trajectory of container security in the age of AI, underscoring the need
for continued research, critical reflection, and cross-disciplinary collaboration
to ensure trustworthy and resilient containerized systems. This is evident
from the following quotes—“I’m not sure. There could be numerous risks
that AI poses that our current security measures are not able to address or
identify” (I14) and “AI can produce new issues like data leakage. This wasn’t
previously an issue, but AI can produce metadata out of your system, which
can be used to reverse engineer your system in the worst instances” (I3).

In summary, we investigated various perspectives on security manage-
ment in software containers from three key stakeholder groups: Technical
Practitioners, Managers, and Academic Researchers. The findings re-
veal that all groups shared a common understanding of the importance
of technical practices–such as applying security controls, using appropri-
ate tools, ensuring proper configuration, and conducting thorough test-
ing – as an essential aspect for managing container security. However,
the scope of concern varied across groups. Technical Practitioners pri-

32

marily focused on addressing technical challenges within the container
life-cycle. Whereas, the Managers emphasized broader organizational
concerns, including resource allocation, policy enforcement, and achiev-
ing organizational goals. Finally, Academic Researchers were concerned
about the unknown vulnerabilities associated with integrating AI into
container systems.

6. Discussion

This research explores security management in containerized projects, ex-
amining two primary aspects: practitioners’ perceptions of container security
issues and the key enablers for addressing security issues in containerized
projects. The findings emphasize technical and non-technical patterns in
addition to technical and non-technical enablers. Integrating technical pat-
terns and enablers with non-technical factors provides a holistic approach to
managing container security. This integration ensures a more comprehensive
and sustainable security strategy, fostering proactive threat mitigation and
continuous improvement in security practices.

A thorough analysis of our findings reveals that technical practitioners,
managers, and academic researchers largely agree on the expected security
challenges in containerized projects. All groups recognize and confirm the
importance of technical enablers such as anomaly detection, AI, security
practices, testing, logging, and monitoring in managing container security.
Furthermore, there is agreement on the importance of non-technical enablers,
such as improving container security knowledge and fostering human col-
laboration within containerized projects. However, notable differences were
observed in the primary concerns of each group regarding the management
of container security in containerized projects. While technical practitioners
prioritized the practical implementation of security, managers emphasized
strategic organizational alignment involving resource allocation, budgeting,
and policy enforcement, and academic researchers adopted a more cautious
stance toward the integration of AI in container development and the appli-
cation of security practices.

The data analysis reveals that better container security management re-
quires increased collaboration from leading industries. These industries must
maintain transparency by sharing internal standards and guidelines for man-

33

aging containerized projects. There is also a need for more collaboration
across industries to standardize processes for employee training and develop
security guidelines suitable for general applications. Additionally, industries
must engage more actively with regulatory authorities to ensure that future
container security advancements align with data protection requirements.

Although improving the knowledge about container security is a personal
responsibility for the practitioners in the first place, we think that it is also
the responsibility of industries interested in containers. Individuals should
proactively seek to attend relevant courses and webinars, and read research
articles and blogs on container security. Industries also have responsibil-
ities towards improving employees’ knowledge about container security by
providing fundamental and advanced training, proper onboarding, and sup-
porting resources and tools. Moreover, organizations interested in containers
establish alliances between industries and research institutes to deliver im-
proved processes, standards, workshops, platforms, and YouTube channels
to provide free knowledge about container security.

Fig. 1 illustrates our initial model that describes the interconnections
among the themes on how practitioners perceive the issues and challenges
in container security. Container security faces several challenges, including
uncertainties in enhancing security practices, time limitations for resolving
vulnerabilities, and the lack of standardized guidelines. Automating secu-
rity processes and implementing security tools are crucial in strengthening
container security by reducing human errors. Additionally, establishing a
shared understanding of security issues is essential, as it provides deeper
insights into their root causes and impact on container systems, thereby fa-
cilitating effective risk management. Practitioners also acknowledge the role
of non-technical factors, such as efficient project management, in aligning
security measures with the existing technology stack. Moreover, the model
also emphasizes the influence of project-based experience on developing secu-
rity expertise, reflected in variations in the time required to address security
issues and differing perspectives on enhancing security practices.

By establishing the relationships between these themes, we can focus on
the strengths and weaknesses of container security practices. Strengths in-
clude a comprehensive understanding of security issues, reliance on tools and
automation, awareness of security dependencies, and consideration of non-
technical factors. Conversely, weaknesses encompass the lack of systematic
knowledge, guidelines, and standards, uncertainties regarding practice im-
provements, and resilience time. Integrating the key enablers for container

34

Containers Security
vvvvvvvvvvvvvvvvvvvvvvvvvvvv

Results in

Causes

Because

+ Impact

Results in

Results in

+ Effect

 Experience-Based
Knowledge

Container Security
as a Chain of

Dependencies

Preferring Automation

Common Understanding
of the Security Issues

 Non-Technical Causes

Lack of
Standardization and

 Guidelines

Uncertainty about
Improving Security

Practices
Unclear Resilience Time

Reliance on Tools

Container Security
 is Conditional

Causes

+ Effect

+ Effect

+ Effect

Results in

Figure 1: Model 1—Container Security Pattern Interrelation Model

security with the security patterns that emerged from the first study will pro-
vide a more comprehensive understanding of how security can be managed
in containerized projects.

Thus, we developed our revised model (as shown in Fig. 2), which pro-
vides an overview of how practitioners manage security in containerized
projects. The model further addresses the essential aspects and improve-
ments, and relevant patterns (as seen in circular boxes) as follows:

Risk Identification supports container security management by identify-
ing potential risks in container systems during the early phases of deploy-
ment. Analyzing risk identification techniques and their impact on the sys-
tem will help estimate the time required to resolve security issues.

Container Testing reduces uncertainty in security practices by providing
empirical evidence of their effectiveness when a system successfully passes
various security tests, such as unit testing, integration testing, stress testing,
and end-to-end testing. Additionally, testing helps determine resilience time
by accurately evaluating the time required to detect, analyze, and mitigate
vulnerabilities in the testing process.

Security Practices supports the container supply chain in container sys-
tems by safeguarding the chain of dependencies throughout the container
development and deployment phases. Moreover, applying security practices

35

Containers Security
vvvvvvvvvvvvvvvvvvvvvvvvvvvv

Results in

Causes

Because

+ Impact

Results in

Results in

+ Effect

 Experience-Based
Knowledge

Container Security
as a Chain of

Dependencies

Preferring Automation

Common Understanding
of the Security Issues

 Non-Technical Causes

Lack of
Standardization and

 Guidelines

Uncertainty about
Improving Security

Practices
Unclear Resilience Time

Reliance on Tools

Container Security
 is Conditional

Container Testing

Risk Identification

Human
collaboration and
communication

Logging and
Monitoring

Sharing Knowledge
about Security

Security Practices

Artificial Intelligence

Causes

+ Effect

+ Effect

+ Effect

Results in

Figure 2: Model 2—Managing Security in Containerized Projects
Legend: Rectangles denote security patterns, while ellipses denote the key enablers

can significantly improve the performance of security tools, as it will sub-
stantially reduce false positive alerts in security reports.

Logging and Monitoring provides a detailed record of security events.
Sharing these records among team members fosters a common understand-
ing of security issues and the necessary precautions. Furthermore, continuous
logging and monitoring help mitigate uncertainties regarding security prac-
tices by offering real-time insights into potential vulnerabilities.

Integrating Artificial Intelligence into container system development and
deployment enhances security by automating vulnerability scanning and en-
suring configuration compliance. AI can also compensate for the lack of
general standardization for the development and deployment processes by
analyzing the effect of security practices on overall container security and
prioritizing effective practices to be implemented.

Sharing Knowledge about Container Security encourages the exchange of
best practices and experiences, fostering a shared understanding of security
issues among developers about container security. Additionally, sharing in-
ternal security standards among industries and organizations interested in
container security will contribute to a collective repository of data that can

36

inform future guidelines for securing container systems.
Human Collaboration and Communication is one of the primary non-

technical factors influencing container security. Effective communication
within teams enhances their understanding of security challenges and pro-
motes collaborative efforts to address them during the development phase.

6.1. Implications on SE Practice

Our findings may assist SE practitioners by providing insights on improv-
ing and managing container security issues in the following ways:

1. Industries should focus on structured guidelines for project documen-
tation to ensure that all relevant security measures, configurations, and
challenges are recorded. Documentation should be regularly updated
to reflect the current status of the project and any emerging security
concerns. Maintaining structured and updated documentation facili-
tates knowledge retention within teams and streamlines the onboarding
process for new developers.

2. Industries can highly benefit from AI security solutions in containerized
projects, such as automated threat detection and self-healing systems.
AI security solutions can significantly enhance system resilience and
detect security breaches before they escalate. Moreover, it enables the
security teams to focus on more complex threats and strategic security
planning in practice.

3. Industries need to continue investing in advanced security tools and en-
sure tools are visible to the team to maintain security in containerised
projects. Advanced security tools need to be implemented alongside
practical security training. Security training must be tailored to de-
velopers for effective tool utilization. Industries need to incorporate
workshops, interactive simulations, and real-world attack scenarios to
help employees develop security skills.

4. The incorporation of gamification in security training can enhance en-
gagement and knowledge retention, particularly for early-career devel-
opers. Security training programs should include interactive techniques
such as real-world threat simulations with multilevel security challenges
to develop a proactive security mindset. These techniques will help de-
velopers master security practices and apply them to real projects.

37

6.2. Future SE Research Avenues

Building upon the findings of this study, several avenues for future re-
search can further advance the understanding of container security issues.
The following research directions are proposed:

1. Establishing standardized security metrics is essential to evaluate se-
curity in containerized environments. Future SE research in containers
should focus on defining measurable indicators that facilitate effective
risk assessment, resource allocation, and mitigation strategies. An em-
pirical approach can provide insights into the most critical security
concerns that require prioritization.

2. Future studies should also assess the implications of security measures
in different containerized environments. Employing exploratory re-
search will help identify domain-specific security priorities and best
practices to improve container security.

3. The responsibility of DevOps teams in securing container systems needs
more exploration in the container context. Investigating ownership and
accountability of security issues in security management can provide in-
sights into how policies influence security outcomes. A mixed-methods
approach —combining qualitative research and quantitative — can of-
fer a comprehensive understanding and validate ownership and account-
ability in containers.

4. Future research should examine the ethical implications of AI secu-
rity tools in container systems, particularly regarding the exposure of
personal and sensitive data. Multidisciplinary research, including legal
analysis, ethical frameworks, and technical evaluations, can provide a
balanced perspective on the ethical implementation and implications
of AI in container security.

6.3. Threats to Validity

To ensure the rigor and trustworthiness of our study, we refer to the ACM
SIGSOFT Empirical Standards [60] in addressing the quality criteria of our
research.

• Credibility : We maintain the credibility of the results by including sup-
porting quotes for each identified theme. It also supports the repro-
ducibility of the themes. A consolidated document with all the direct
quotes, codes, and themes is available in the replication package.

38

• Usefulness : The findings of this research benefit practitioners by of-
fering a visual model of container security management. The model
highlights the patterns in containerized projects and the enablers to
improve these patterns.

• Transferability : The model describing the security patterns and their
relationship summarizes the experiences of practitioners working across
various domains and roles. Additionally, it connects each pattern to
the specific improving enabler. This makes the results comprehensive
and applicable to a wide range of projects and domains.

• Resonance: We explain the strengths and weaknesses in the security
patterns of container systems and provide an enabler to deepen the
understanding of security management in container systems. Software
practitioners could directly use these data to enhance, maintain, and
manage container security.

7. Conclusion

Software containers have become a widely adopted approach for efficiently
deploying software-intensive applications. However, existing SE research lit-
erature on security management predominantly focuses on technical security
practices and testing methodologies, neglecting the significant role of human
administration in planning, decision-making, and strategy development con-
tainer systems. Consequently, this research contributes to the knowledge of
security management in container systems by highlighting how SE practition-
ers perceive the various security challenges and their approaches to managing
these security issues in software container systems.

We conducted two semi-structured interview studies to examine how prac-
titioners manage security issues. While the first study explored how prac-
titioners perceive security issues in containerized systems regarding their
causes and implications, the second study investigated how SE practition-
ers manage these security issues in containerized projects.

The following are the main findings from our research:

1. Our findings provide insights into how practitioners perceive security
issues, their causes, and the mitigation techniques and provide an
overview of the security patterns in containerized projects.

39

2. The findings also present the advances of containers as a solution for
deploying software applications in terms of clarity of security issues,
integrating tools that help improve security and automation, and con-
sideration of non-technical factors during developing and deploying con-
tainerized systems.

3. The findings also explore the weaknesses of containerized software sys-
tems, including the lack of systematic knowledge about security issues,
guidelines uncertainty regarding practice improvements, and undefined
resilience time.

4. Furthermore, we identified key enablers for addressing security issues in
containers, categorizing them into technical and non-technical factors.
Technical enablers include risk identification, security testing, security
practices, logging and monitoring, and AI solutions. Non-technical
enablers encompass knowledge sharing, effective communication, and
collaboration among team members. A combination of technical and
non-technical enablers ensures comprehensive addressing of container
security issues on the technical and strategic levels.

5. We present diverse stakeholder perspectives on container security man-
agement. Technical practitioners expressed confidence in achieving con-
tainer security through security practices and tools. In contrast, man-
agers adopted a more cautious view, acknowledging that even with best
practices and tools, persistent security issues may remain. Academic
researchers offered a more skeptical perspective, particularly regarding
the increasing reliance on AI that might introduce future risks.

6. We propose a conceptual model that describes how SE practitioners
perceive and manage security in containerized projects. The model
presents the security patterns, illustrates their interconnections, and
highlights key enablers that support effective security management.
The model will guide practitioners in developing robust strategies for
planning and deploying highly secure container systems.

Acknowledgements

This research is supported by Containers as the Quantum Leap in Soft-
ware Development (QLeap) project funded by Business Finland (BF) grant
number 3215/31/2022.

During the preparation of this work, the author(s) used Copilot in or-
der to enhance the readability and clarity of the text. After using Copilot,

40

the author(s) reviewed and edited the content as needed and take(s) full
responsibility for the content of the publication.

References

[1] G. Liva, C. Codagnone, G. Misuraca, V. Gineikyte, E. Barcevicius, Ex-
ploring digital government transformation: a literature review, in: Pro-
ceedings of the 13th International Conference on Theory and Practice
of Electronic Governance, 2020, pp. 502–509.

[2] V. Maltese, Digital transformation challenges for universities: Ensuring
information consistency across digital services, Cataloging & Classifica-
tion Quarterly 56 (2018) 592–606.

[3] F. Almeida, J. D. Santos, J. A. Monteiro, The challenges and opportu-
nities in the digitalization of companies in a post-covid-19 world, IEEE
Engineering Management Review 48 (2020) 97–103.

[4] M. Koskinen, T. Mikkonen, P. Abrahamsson, Containers in software de-
velopment: A systematic mapping study, in: Product-Focused Software
Process Improvement: 20th International Conference, PROFES 2019,
Barcelona, Spain, November 27–29, 2019, Proceedings 20, Springer,
2019, pp. 176–191.

[5] G. Benguria, J. Alonso, I. Etxaniz, L. Orue-Echevarria, M. Es-
calante, Agile development and operation of complex systems in multi-
technology and multi-company environments: Following a DevOps ap-
proach, in: Systems, Software and Services Process Improvement: 25th
European Conference, EuroSPI 2018, Bilbao, Spain, September 5-7,
2018, Proceedings 25, Springer, 2018, pp. 15–27.

[6] D. P. VS, S. C. Sethuraman, M. K. Khan, Container security: precaution
levels, mitigation strategies, and research perspectives, Computers &
Security (2023) 103490.

[7] T. Combe, A. Martin, R. Di Pietro, To Docker or not to Docker: A
security perspective, IEEE Cloud Computing 3 (2016) 54–62.

[8] S. Sultan, I. Ahmad, T. Dimitriou, Container security: Issues, chal-
lenges, and the road ahead, IEEE Access 7 (2019) 20.

41

[9] A. Martin, S. Raponi, T. Combe, R. Di Pietro, Docker ecosystem–
vulnerability analysis, Computer Communications 122 (2018) 30–43.

[10] B. Kaur, M. Dugré, A. Hanna, T. Glatard, An analysis of security vul-
nerabilities in container images for scientific data analysis, GigaScience
10 (2021) giab025.

[11] V. Mahavaishnavi, R. Saminathan, R. Prithviraj, Secure container or-
chestration: A framework for detecting and mitigating orchestrator-level
vulnerabilities, Multimedia Tools and Applications (2024) 1–21.

[12] L. Chen, Y. Xia, Z. Ma, R. Zhao, Y. Wang, Y. Liu, W. Sun, Z. Xue,
Seaf: A scalable, efficient, and application-independent framework for
container security detection, Journal of Information Security and Ap-
plications 71 (2022) 103351.

[13] R. Jolak, T. Rosenstatter, M. Mohamad, K. Strandberg, B. Sangchoolie,
N. Nowdehi, R. Scandariato, Conserve: A framework for the selection
of techniques for monitoring containers security, Journal of Systems and
Software 186 (2022) 111158.

[14] M. Sroor, R. Mohanani, T. Das, T. Mikkonen, S. Dasanayake, Practi-
tioners’ perceptions of security issues in software containers: A qualita-
tive study, in: 2024 50th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), IEEE, 2024, pp. 423–430.

[15] T. Siddiqui, S. A. Siddiqui, N. A. Khan, Comprehensive analysis of con-
tainer technology, in: 2019 4th international conference on information
systems and computer networks (ISCON), IEEE, 2019, pp. 218–223.

[16] M. Souppaya, J. Morello, K. Scarfone, Application container security
guide, Technical Report, National Institute of Standards and Technol-
ogy, 2017.

[17] T. Balzacq, T. Basaran, D. Bigo, E.-P. Guittet, C. Olsson, Security
practices, in: Oxford Research Encyclopedia of International Studies,
2010.

[18] M. S. I. Shamim, F. A. Bhuiyan, A. Rahman, XI commandments of ku-
bernetes security: A systematization of knowledge related to Kubernetes

42

security practices, 2020 IEEE Secure Development (SecDev) (2020) 58–
64.

[19] M. Liu, X. Peng, A. Marcus, C. Treude, J. Xie, H. Xu, Y. Yang, How to
formulate specific how-to questions in software development?, in: Pro-
ceedings of the 30th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, 2022,
pp. 306–318.

[20] K.-J. Stol, B. Fitzgerald, The abc of software engineering research, ACM
Transactions on Software Engineering and Methodology (TOSEM) 27
(2018) 1–51.

[21] S. E. Hove, B. Anda, Experiences from conducting semi-structured
interviews in empirical software engineering research, in: 11th IEEE
International Software Metrics Symposium (METRICS’05), IEEE, 2005,
pp. 10–pp.

[22] I. G. Ndukwe, S. A. Licorish, A. Tahir, S. G. MacDonell, How have views
on software quality differed over time? research and practice viewpoints,
Journal of Systems and Software 195 (2023) 111524.

[23] L. Leite, G. Pinto, F. Kon, P. Meirelles, The organization of software
teams in the quest for continuous delivery: A grounded theory approach,
Information and Software Technology 139 (2021) 106672.

[24] Á. González-Prieto, J. Perez, J. Diaz, D. López-Fernández, Reliability in
software engineering qualitative research through inter-coder agreement,
Journal of Systems and Software 202 (2023) 111707.

[25] R. Mohanani, P. Ram, A. Lasisi, P. Ralph, B. Turhan, Perceptions of
creativity in software engineering research and practice, in: 2017 43rd
euromicro conference on software engineering and advanced applications
(seaa), IEEE, 2017, pp. 210–217.

[26] C.Anderson, Docker [software engineering], IEEE Software 32 (2015)
102–c3.

[27] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance
comparison of virtual machines and linux containers, in: 2015 IEEE in-
ternational symposium on performance analysis of systems and software
(ISPASS), IEEE, 2015, pp. 171–172.

43

[28] O. Bentaleb, A. S. Belloum, A. Sebaa, A. El-Maouhab, Containerization
technologies: Taxonomies, applications and challenges, The Journal of
Supercomputing 78 (2022) 1144–1181.

[29] D. Bernstein, Containers and cloud: From LXC to Docker to Kuber-
netes, IEEE cloud computing 1 (2014) 81–84.

[30] P. Hoenisch, I. Weber, S. Schulte, L. Zhu, A. Fekete, Four-fold auto-
scaling on a contemporary deployment platform using Docker containers,
in: Service-Oriented Computing: 13th International Conference, ICSOC
2015, Goa, India, November 16-19, 2015, Proceedings 13, Springer, 2015,
pp. 316–323.

[31] A. Rahman, S. I. Shamim, D. B. Bose, R. Pandita, Security misconfigu-
rations in open source Kubernetes manifests: An empirical study, ACM
Transactions on Software Engineering and Methodology 32 (2023) 1–36.

[32] M. Sroor, Leverage software containers adoption by decreasing cy-
ber risks and systemizing refactoring of monolithic applications, in:
Product-Focused Software Process Improvement: 23rd International
Conference, PROFES 2022, Jyväskylä, Finland, November 21–23, 2022,
Proceedings, Springer, 2022, pp. 675–680.

[33] L. Benedicic, F. A. Cruz, A. Madonna, K. Mariotti, Sarus: Highly scal-
able docker containers for hpc systems, in: High Performance Comput-
ing: ISC High Performance 2019 International Workshops, Frankfurt,
Germany, June 16-20, 2019, Revised Selected Papers 34, Springer, 2019,
pp. 46–60.

[34] D. J. Reifer, How good are agile methods?, IEEE Software 19 (2002)
16–18.

[35] W. Kithulwatta, W. U. Wickramaarachchi, K. Jayasena, B. Kumara,
R. Rathnayaka, Adoption of docker containers as an infrastructure for
deploying software applications: A review, Advances on Smart and Soft
Computing: Proceedings of ICACIn 2021 (2021) 247–259.

[36] H. Gantikow, S. Walter, C. Reich, Rootless containers with podman
for hpc, in: International Conference on High Performance Computing,
Springer, 2020, pp. 343–354.

44

[37] T. Xu, D. Marinov, Mining container image repositories for software
configuration and beyond, in: Proceedings of the 40th International
Conference on Software Engineering: New Ideas and Emerging Results,
2018, pp. 49–52.

[38] F. Paraiso, S. Challita, Y. Al-Dhuraibi, P. Merle, Model-driven manage-
ment of Docker containers, in: 2016 IEEE 9th International Conference
on cloud Computing (CLOUD), IEEE, 2016, pp. 718–725.

[39] E. Casalicchio, Container orchestration: A survey, Systems Modeling:
Methodologies and Tools (2019) 221–235.

[40] A. Ibrahim, S. Bozhinoski, A. Pretschner, Attack graph generation for
microservice architecture, in: Proceedings of the 34th ACM/SIGAPP
symposium on Applied Computing, 2019, pp. 1235–1242.

[41] A. Zerouali, V. Cosentino, T. Mens, G. Robles, J. M. Gonzalez-
Barahona, On the impact of outdated and vulnerable javascript packages
in Docker images, in: 2019 IEEE 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), IEEE, 2019, pp.
619–623.

[42] R. Shu, X. Gu, W. Enck, A study of security vulnerabilities on Docker
hub, in: Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, 2017, pp. 269–280.

[43] H. Gantikow, C. Reich, M. Knahl, N. Clarke, Providing security in
container-based hpc runtime environments, in: High Performance Com-
puting: ISC High Performance 2016 International Workshops, Exa-
Comm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, Pˆ 3MA, VHPC,
WOPSSS, Frankfurt, Germany, June 19–23, 2016, Revised Selected Pa-
pers 31, Springer, 2016, pp. 685–695.

[44] A. M. Dissanayaka, S. Mengel, L. Gittner, H. Khan, Vulnerability pri-
oritization, root cause analysis, and mitigation of secure data analytic
framework implemented with mongodb on singularity linux containers,
in: Proceedings of the 2020 the 4th International Conference on Com-
pute and Data Analysis, 2020, pp. 58–66.

45

[45] Z. Jian, L. Chen, A defense method against Docker escape attack,
in: Proceedings of the 2017 International Conference on Cryptography,
Security and Privacy, 2017, pp. 142–146.

[46] A. R. MP, A. Kumar, S. J. Pai, A. Gopal, Enhancing security of Docker
using Linux hardening techniques, in: 2016 2nd International Confer-
ence on Applied and Theoretical Computing and Communication Tech-
nology (iCATccT), IEEE, 2016, pp. 94–99.

[47] J. Xu, Y. Wu, Z. Lu, T. Wang, Dockerfile tf smell detection based on
dynamic and static analysis methods, in: 2019 IEEE 43rd Annual Com-
puter Software and Applications Conference (COMPSAC), volume 1,
IEEE, 2019, pp. 185–190.

[48] G. Budigiri, C. Baumann, J. T. Mühlberg, E. Truyen, W. Joosen, Net-
work policies in Kubernetes: Performance evaluation and security anal-
ysis, in: 2021 Joint European Conference on Networks and Communi-
cations & 6G Summit (EuCNC/6G Summit), IEEE, 2021, pp. 407–412.

[49] S. Gholami, H. Khazaei, C.-P. Bezemer, Should you upgrade official
Docker hub images in production environments?, in: 2021 IEEE/ACM
43rd International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), IEEE, 2021, pp. 101–105.

[50] S. Timonen, M. Sroor, R. Mohanani, T. Mikkonen, Anomaly detection
through container testing: A survey of company practices, in: Interna-
tional Conference on Product-Focused Software Process Improvement,
Springer, 2023, pp. 363–378.

[51] M. U. Haque, M. A. Babar, Well begun is half done: An empirical study
of exploitability & impact of base-image vulnerabilities, in: 2022 IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), IEEE, 2022, pp. 1066–1077.

[52] T.-P. Doan, S. Jung, DAVS: Dockerfile analysis for container image
vulnerability scanning, Computers, Materials & Continua 72 (2022).

[53] J. Cándido, M. Aniche, A. Van Deursen, Log-based software monitoring:
a systematic mapping study, PeerJ Computer Science 7 (2021) e489.

46

[54] S. K. Mondal, R. Pan, H. D. Kabir, T. Tian, H.-N. Dai, Kubernetes
in it administration and serverless computing: An empirical study and
research challenges, The Journal of Supercomputing (2022) 1–51.

[55] M. Belair, S. Laniepce, J.-M. Menaud, Snappy: programmable kernel-
level policies for containers, in: Proceedings of the 36th Annual ACM
Symposium on Applied Computing, 2021, pp. 1636–1645.

[56] G. P. Fernandez, A. Brito, Secure container orchestration in the cloud:
Policies and implementation, in: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, 2019, pp. 138–145.

[57] C. B. Seaman, Qualitative methods in empirical studies of software
engineering, IEEE Transactions on software engineering 25 (1999) 557–
572.

[58] P. E. Strandberg, Ethical interviews in software engineering, in: 2019
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM), IEEE, 2019, pp. 1–11.

[59] B. DiCicco-Bloom, B. F. Crabtree, The qualitative research interview,
Medical Education 40 (2006) 314–321.

[60] P. Ralph, S. Baltes, D. Bianculli, Y. Dittrich, M. Felderer, R. Feldt,
A. Filieri, C. A. Furia, D. Graziotin, P. He, et al., ACM SIGSOFT
Empirical Standards (2020).

[61] J. Saldaña, The coding manual for qualitative researchers, SAGE pub-
lications Ltd, 2021.

[62] D. S. Cruzes, T. Dyba, Recommended steps for thematic synthesis in
software engineering, in: International Symposium on Empirical Soft-
ware Engineering and Measurement, IEEE, 2011, pp. 275–284.

[63] S. Baltes, P. Ralph, Sampling in software engineering research: A critical
review and guidelines, Empirical Software Engineering 27 (2022) 94.

47

	Introduction
	Background
	Software Containers
	 Security Issues in Software Containers
	Addressing Security Concerns in Container Systems

	Study Design
	Research Questions
	Research Approach
	Research Planning
	Piloting the Interview Instrument
	Participants Sampling
	Data Transcription and Management

	Data Analysis
	Data Familiarization
	Generating Codes
	Forming Themes and Categories
	Developing the Model

	Findings
	Study 1—Practitioners' Perspective on Container Security Issues
	Strengths
	Weaknesses

	Study 2—Addressing the Concerns in Container Security
	Technical Enablers
	Non-technical Enablers

	Diverse Stakeholder Perspectives on Container Security Management

	Discussion
	Implications on SE Practice
	Future SE Research Avenues
	Threats to Validity

	Conclusion

