
Educating Augmented Programmers 

Mary Sánchez-Gordón,  

Edmundo Tovar,  

Ricardo Colomo Palacios,  

Nelson Piedra,  

Manuel Castro 

 

There is an artificial intelligence-based technology that has the potential to augment the work of 

human programmers. This article discusses some capabilities built around generative artificial 

intelligence (AI) and large language models (LLMs) that impact programming education. 

 

Over the  last three years, venture capital companies 

have invested around $1.7 billion in generative AI 

(GAI) solutions, with the most funding for AI software 

coding and AI-enabled drug discovery [1]. The 

application of AI-based technologies in the daily tasks 

of programmers is delivering on the promise of 

augmented programming. Research is increasingly 

locating tasks where AI works alongside traditional 

tools and the human workflow. Popular tools like 

ChatGPT and Copilot can assist programmers in 

aspects like code generation, code competition and 

code optimization, while there are also specific tools in 

the market like TabNine or Replit Ghostwriter helping 

programmers in other tasks like refactoring or 

documenting as well. These AI-based tools are 

envisaged to increase the amount of work performed by 

programmers, providing a way to combat the shortage 

of IT talent. In this article, authors review the impact of 

AI-based Programming Tools on programmers´ 

professional practice and propose a way to adapt initial 

professional education to this new scenario in the 

context of the Computing Curricula 2020. 

IS THIS THE END OF COMPUTER 

PROGRAMMING? 

No, it is not the end of computer programming. 

Computer programming continues to be a crucial skill 

and profession, with increasing demand year over year. 

While advancements in AI and automation may 

streamline certain programming tasks and increase 

efficiency, they do not replace the need for human 

programmers. Regardless the  experience level of 

programmers, they need to understand the code, tasks, 

and programming concepts [2]. They spend more than 

half of their time on program comprehension [3]. As 

software systems continue to evolve and increase in 

complexity and magnitude, there will always be a need 

for skilled programmers to create, maintain, and 

improve them. So far, the cognitive load on the human 

programmer persist [4]. However, upskilling is an 

appealing option because the landscape for 

programming-related occupations will change as they 

appear to be more susceptible to being influenced by 

AI-based tools [5], and job markets are currently 

changing due to mass tech layoffs.  

In short, while there may be changes and advancements 

in the field of programming, programming is not going 

away anytime soon. If anything, the ways of working 

will change and programming skills will become even 

more valuable and essential as technology continues to 

play an increasingly significant role in our lives.  

TOOLS TO AUGMENT PROGRAMMERS' 

POTENTIAL 

Since the 1970s, Fourth Generation Languages (4GL) 

aimed to make programming easier by using 

Computer-Assisted Software Engineering (CASE) 

tools. Therefore, code generation automation has been 

a longstanding goal. However, most of these 

approaches are semi-automated approaches which 

require programming skills and often need experts to 

be involved. Although there is still not a best tool for 

programming, programming languages and tools have 

evolved over the years to address capabilities like code 

completion, code translation between programming 

languages, software documentation, debugging and 



  

testing code. In fact, remarkable progress has done in 

the field of GAI and LLMs [5], but lately, Generative 

Pre-trained Transformers (GPT) have taken the 

spotlight [1]. LLMs are commonly related to GPT, but 

they are not limited to transformer-based models. They 

can be trained using a range of architectures to go 

beyond natural language uses and brings code-

generating abilities [5].  

Utilizing this cutting-edge technology, tools such as 

Copilot, TabNine, and Replit Ghostwriter attempt to 

overcome the shortcomings of their forerunners. They 

take advantage of natural-language queries and the 

ability to program by example ⸻a technique called 

few-shot learning in the research literature. For 

instance, it allows them to suggest real-time code 

completions based not only on what programmers type 

but also considering the rest of the code. The goal of 

these tools is to help programmers improve their 

productivity by assisting them with tasks like the ones 

mentioned above and augmenting processes like 

programming rather than becoming the programmer 

itself. Programmers can ask for recommendations on 

libraries, convert either programs from one language to 

another or data from one format to another, generate 

filler content for something like an SQL database and 

receive support for the debugging process of a program.  

No wonder programmers want to learn how to use AI-

based Programming Tools to their advantage, but how 

future programming education can address these tools 

remains unclear. 

EDUCATING PROGRAMMERS 

Computing Curricula 2020 (CC2020) is a global 

initiative that focuses on competencies [6]. CC2020 

emerged as a response to the changing dynamics of 

computing and changes in the workplace. This led to 

develop a competency framework that includes three 

competency dimensions: knowledge, skills, and 

dispositions.  

From this perspective, the evolution of AI-based 

Programming Tools is changing the scenario since they 

facilitate access to knowledge and pose a human-

centered partnership model of programmers and AI 

working together to enhance programming, learning, 

and writing skills. Figure 1 illustrates the potential 

impact of AI-based Programming Tools on the set of 

computer programmers’ skills and abilities proposed 

by the occupational information network from the U.S. 

[7].  

 

Figure 1. Overview of the impact of AI-based 

Programming Tools capabilities on professional 

computer programmers’ skills and abilities.  

It seems that, by their nature, AI-based Programming 

Tools can influence more on hard skills than soft skills. 

We envision a low impact over analytical skills 

⸻systems analysis, operations analysis, quality control 

analysis⸻ and management skills ⸻coordination, time 

management, and monitoring. Although mathematics 

and reading comprehension are hard skills, we believe 

that only the last is not affected by these new tools. In 

line with this, mathematical reasoning and other related 

abilities ⸻number facility and information ordering⸻ 

are also influenced. The influence these tools can have 

on written expression is also not surprising. However, 

soft skills like critical thinking, problem-solving and 

decision-making rise as necessary to maximize the 

benefits of using these tools. Likewise, five relevant 

abilities also seem to come into play ⸻fluency of ideas, 

originality, problem sensitivity and 

deductive/inductive reasoning⸻ whereas the 

remaining skills and abilities are still needed.  

In this panorama, raising requirements for degrees 

related to computer science is a valid mechanism of 

“natural selection”. However, we advocate for helping 

students develop a growth mindset by adapting initial 

professional education beyond fundamental 

programming. 

One way is to integrate market tools like Copilot into 

courses related to programming fundamentals. 

Although it can improve proficiency with syntaxes and 

semantics of programming languages, students still 

need to make sure that the code is functional. These AI-

based Programming Tools can give students all the 

pieces they might need, but it falls on the student to put 

the pieces all together in a way that fulfils the 

requirements. In other words, Copilot generates code 

that provides some options that could be the right fit, 

but the programmer still has to decide which snippets 

to use and how to use them ⸻ program comprehension. 

It entails devising a plan that calls for critical thinking, 

problem-solving, and decision-making as well as 



  

abilities related to problem sensitivity, fluency of ideas, 

and originality. Therefore, course design should 

embrace this technology while cultivating the 

necessary soft skills for future professionals. 

Additionally, although Copilot automatically suggests 

the code it thinks the programmer might want, the more 

specific code comments are, the better Copilot can 

create code that matches the programmer’s intentions. 

Thus, a valuable skill is to communicate effectively by 

writing comments in the code. In this way, AI-based 

Programming Tools, and others, can understand the 

pieces of code. Writing according to the needs of the 

audience has always been key but now new motivations 

emerge. Students can write a test title in natural 

language so that Copilot can use it for unit testing. 

However, they must ensure proper functioning by using 

their analytical skills and knowledge while gaining 

application domain expertise. 

The underlying features of these tools are very 

appealing, especially to non-expert programmers 

because they can overcome barriers related to hard 

skills. However, the use of third-party tools or libraries 

also requires considering the potential impact on 

aspects like security risks and control over the piece of 

software. For instance, a piece of code that uses an AI-

generated library or ready-to-use agents from a free 

marketplace like FIXIE [8] is threatened if 

subsequently, it appears that the library or agent has 

flaws or defects. Thus, students must be knowledgeable 

about the limitations of AI-based Programming Tools. 

In practice, AI-based Programming Tools also impact 

the effort required to perform some programming tasks. 

In the best scenario, these tools can increase the amount 

of work performed, and therefore future programmers 

should gain expertise using these tools. However, we 

also note that professional programmers, at all levels of 

experience, rarely work alone and code in a vacuum so 

other soft skills not directly impacted by AI-based 

Programming Tools should be cultivated. In this new 

scenario, it is also expected that Question & Answer 

sites like stack overflow that connect programmers 

with each other to help solve problems also change.  

Another way to implement the human-centered 

partnership model is to carefully design in-class 

activities or labs that take students through a set of 

exercises or tasks guided by an autonomous intelligent 

teaching assistant (an AI Tutor) rather than an 

instructor or teacher assistant that improves students’ 

understanding of the material [9]. In this case,  the focus 

is on the journey learning and may empower students 

to become self-directed and autonomous learners [10]. 

In addition, an AI tutor has the potential to adapt to 

goals desired by the students, their speed of learning 

and their level of knowledge to aim to ensure they are 

getting the most out of their education [11]. This online 

teaching can support students, particularly from 

minority groups, and decrease dropout rates. 

 

AI-based Programming Tools are gaining more 

popularity and use due to the promise of a faster, less 

manual programming process. Thus, educating 

programmers on the limitations of these and other tools 

is needed to let them decide when they should use them. 

In the case of AI-based tools, they must learn when to 

ask for assistance and when to make decisions for 

themselves. Course design also must adapt to introduce 

new tools that boost hard skills like programming and 

develop soft skills like critical thinking, complex 

problem-solving and decision-making as never before. 

Finally, education must be directly connected to real-

world situations and prepare students for trend 

technologies that respond to industry needs. 

REFERENCES 
 
1.  Jackie Wiles Beyond ChatGPT: The Future of Generative 

AI for Enterprises Available online: 
https://www.gartner.com/en/articles/beyond-chatgpt-the-

future-of-generative-ai-for-enterprises (accessed on 29 

March 2023). 
2.  Heinonen, A.; Lehtelä, B.; Hellas, A.; Fagerholm, F. 

Synthesizing Research on Programmers’ Mental Models 

of Programs, Tasks and Concepts -- a Systematic 
Literature Review 2022. 

3.  Xia, X.; Bao, L.; Lo, D.; Xing, Z.; Hassan, A.E.; Li, S. 

Measuring Program Comprehension: A Large-Scale Field 
Study with Professionals. In Proceedings of the 2018 

IEEE/ACM 40th International Conference on Software 

Engineering (ICSE); May 2018; pp. 584–584. 
4.  Nikita Povarov AI for Software Developers: A Future or a 

New Reality? Available online: 

https://www.infoq.com/articles/ai-for-software-
developers/ (accessed on 3 April 2023). 

5.  Eloundou, T.; Manning, S.; Mishkin, P.; Rock, D. GPTs 

Are GPTs: An Early Look at the Labor Market Impact 
Potential of Large Language Models 2023. 

6.  CC2020 Task Force Computing Curricula 2020: 

Paradigms for Global Computing Education; ACM: New 
York, NY, USA, 2020; 

7.  O*net Online 15-1251.00 - Computer Programmers 

Available online: 

https://www.onetonline.org/link/summary/15-

1251.00?redir=15-1131.00 (accessed on 31 March 2023). 
8.  Fixie.Ai — Build on LLMs Available online: 

https://www.fixie.ai/ (accessed on 2 April 2023). 

9.  Jalil, S.; Rafi, S.; LaToza, T.D.; Moran, K.; Lam, W. 
ChatGPT and Software Testing Education: Promises & 

Perils 2023. 

10.  Sok, S.; Heng, K. ChatGPT for Education and Research: A 
Review of Benefits and Risks 2023. 

11.  AI for Programming Education. Microsoft Research. 

 

 

 


