
A Neural Blockchain for Requirements Traceability:

BC4RT Prototype

Selina Demi 1[0000-0001-5988-4697], Ricardo Colomo-Palacios 1[0000-0002-1555-9726], Mary

Sánchez-Gordón 1[0000-0002-5102-1122], Carlos Velasco2, Ramon Cano2

1 Østfold University College, Halden, Norway

{selina.demi,ricardo.colomo-palacios,mary.sanchez-gordon}@hiof.no
2 ByEvolution Creative Factory, Málaga, Spain

{carlos.velasco,ramon.cano}@byevolution.com

Abstract. The ever-increasing globalization of the software industry presents

challenges related to requirements engineering activities. Managing require-

ments’ changes and tracing software artifacts is not trivial in a multi-site envi-

ronment composed of a variety of stakeholders that do not trust each other. In

this study, we propose a neural blockchain prototype for the traceability of re-

quirements (BC4RT) throughout the software development lifecycle in interor-

ganizational software projects. The prototype is implemented using a neural

blockchain platform, namely NDL ArcaNet, due to its inherent properties: per-

formance efficiency, sustainability, and scalability. Besides these features, the

proposed prototype provides a holistic and reliable view of software artifacts,

requirements’ changes, and trace links. The increased visibility enhances col-

laboration, communication, and trust among stakeholders, and can potentially

improve software development efficiency and quality.

Keywords: blockchain technology, requirements traceability, interorganiza-

tional software projects, neural distributed ledger

1 Introduction

Software engineering (SE) has shifted from conventional co-located development to

global distributed development. Today’s software products are developed as a result

of complex supply chains that entail the collaboration of a variety of distributed part-

ners throughout the software lifecycle, from conceptualization and development, to

maintenance [1]. While global software development companies leverage benefits of

distributed development: time, cost, and access to skillful resources, they also face a

set of challenges: lack of communication and coordination, lack of uniform processes

in a multi-site environment, lack of trust, lack of management and transfer, and chal-

lenges related to requirements engineering (RE) activities [2] which is the focus of

this study. Managing requirements’ changes, and tracing software artifacts in both a

forward and backward direction is not a trivial activity in interorganizational software

projects [3]. Although a plethora of traceability studies exists [4], the traceability

community has outlined the open challenge of enabling full traceability in complex

and large-scale software development contexts that rely on cross-organizational col-

laboration of multiple stakeholders [5, 6].

This study proposes a neural blockchain prototype for the trustworthy management

and traceability of requirements in interorganizational software projects. This pro-

posal lies in the concept of creating tokens for each requirement, tracking the lifecycle

of such tokens, and certifying operations that are performed on tokens, without the

need for resource-wasteful consensus algorithms. Therefore, neural blockchains pre-

sent an opportunity to store artifacts created throughout the software development

lifecycle in a scalable, efficient, and transparent manner, while retaining security. In

addition, the proposed prototype enables participants of the software development

lifecycle with a holistic and reliable view of software artifacts, requirements’ changes,

and trace links. The increased visibility on the software development process may

lead to enhanced communication and coordination, and trust among stakeholders in

interorganizational software projects. In turn, this can potentially improve software

development efficiency and quality.

The remainder of this study is structured as follows: Section 2 provides an over-

view of the fundamental blockchain concepts, applications of blockchain technology

in software engineering, and requirements engineering and traceability challenges.

Section 3 proposes a neural blockchain prototype for the management and traceability

of requirements throughout the software development lifecycle, and Section 4 pre-

sents implementation details of the prototype. Section 5 concludes the study and pre-

sents directions for future research.

2 Background

2.1 Blockchain Basics

Blockchain is a peer-to-peer (P2P) distributed ledger technology that stores digital

transactions in a chain of blocks [7]. These digital transactions represent interactions

between P2P network peers that entail the exchange of digital assets which can be in

the form of information, good, services or rules to trigger another transaction [8].

Network peers group up the transactions into blocks and distribute them throughout

the network. It is noteworthy that these peers need to achieve agreement with regards

to the correct data state on the system. Ensuring the consistency of data on the ledger

for all network peers requires the deployment of consensus algorithms which vary

among different blockchain implementations. The main two groups of consensus

algorithms are [8]: (i) Proof-of-X algorithms, and (ii) Byzantine Fault Tolerant algo-

rithms. Furthermore, the exchange of assets relies on contractual rights and obliga-

tions of nodes that can be digitized and managed by smart contracts (SCs). SCs are

computer programs that are stored on the blockchain and enable the modification of

the ledger state when certain conditions are met. The modification of the ledger state

is triggered by a transaction posted to the distributed ledger [9]. Initially, smart con-

tracts were conceptualized to enable trusted agreements among different parties in a

trustless environment [9], but nowadays they are considered similar to general pur-

pose software programs and can, at least theoretically, perform any computational

task that can be performed by conventional programs [10].

The first blockchain application was proposed in 2008 and was named Bitcoin

[11]. Although distributed ledger technologies existed prior to Bitcoin, the novelty of

blockchain lies in the combination of existing technologies, such as P2P networks,

cryptography, transactions timestamping and shared computational power [8]. The

combination of these technologies enables the sharing and storage of data in a decen-

tralized manner without the need to entrust a central party for the maintenance of the

ledger. Belotti et al. [8] categorized blockchains with respect to network accessibility

in: (i) permissionless blockchains – anyone can participate in the network and modify

the network state, e.g., Bitcoin and Ethereum. (ii) permissioned blockchains – only

selected nodes can participate in the network and modify the network state. The latter

can be further categorized according to the nature of participants in private block-

chains and consortium blockchains. While in private blockchains participants are

within the same organization, in consortium blockchains several organizations share a

common goal.

2.2 Blockchain in Software Engineering

Recently, academic researchers have encouraged the cross-fertilization of blockchain

technology and SE [12, 13]. Our previous systematic mapping study [14] explored the

alignment between blockchain inherent properties and the modern (global) SE land-

scape, benefits and challenges of using this technology, and the proposed use cases. In

what follows, a limited number of these use cases is introduced:
Lenarduzzi et al. [15] proposed a blockchain model that uses SCs to relieve some

of the duties of the product owner in agile processes such as Lean-Kanban or Scrum.

In this model, SCs automatically validate the correctness of user stories implemented

by developers by comparing the acceptance tests output with the expected output. The

correct implementation of user stories triggers the automatic payment to developers in

cryptocurrencies or tokens.

Yilmaz et al. [16] proposed a blockchain model in which the project leader intro-

duces new work structures to the blockchain network, developers choose their pre-

ferred tasks and develop code which is validated by testers. Testers share a candidate

block and generate consequent blocks collaboratively. This model is aimed to address

trust and integrity issues in large-scale agile development.

Bose et al. [17] proposed the application of blockchain for trustworthy software

provenance. The authors introduced a framework enabled by blockchain technology

named Blinker that captures and queries provenance data by means of PROV family

of specifications, verifies the authenticity of the data through voting mechanisms and

enables hierarchical and interactive visualization of provenance related data.

Yau and Patel [18] adopted blockchain technology to achieve reliable coordination

in collaborative software development. Their blockchain-based approach aims to

address limitations of centralized solutions, such as single point of failure, data tam-

pering and auditability, and lack of verification for the data to be stored. Smart con-

tracts are used to verify the compliance of acceptance criteria for software compo-

nents in an automatic fashion.

None of these studies focus on the application of blockchain technology for the

management and traceability of requirements throughout the software development

lifecycle in interorganizational software projects.

2.3 Requirements Engineering and Traceability

Requirements engineering (RE) is a critical component of effective software devel-

opment projects. While previous studies provided empirical evidence to support the

contribution of effective RE to improved productivity, product quality, and risk man-

agement [19], the RE process has been considered as inherently complex and difficult

to standardize via holistic solutions [20]. As software becomes more complex and the

number of stakeholders, along with their heterogeneity increases, there is a need to

enhance the large-scale RE process [21]. One of the most critical challenges that has

been identified in RE, particularly in managing requirements’ changes in global soft-

ware development is the lack of communication, coordination, and control that leads

to reduced levels of trust and confidence among distributed team members [22]. In

addition, Akbar et al. [22] highlighted the lack of change impact analysis at distribut-

ed sites as a significant challenge. Estimating the impact of changes on the system’s

costs, time and quality is essential, yet difficult to achieve in distributed settings.

According to Jayatilleke and Lai [23], requirements traceability can contribute to

keep track of the impact of changes. Traceability has been defined as “the ability to

follow the life of a requirement in both a forward and backward direction…” [24] or

as the ability to create, maintain, and use links between artifacts generated in different

phases of the software lifecycle [5]. Traceability is particularly important in safety-

critical domains, in light of proving the specification of safety requirements, the con-

sideration of these requirements during the design and development phases, and their

validation in test cases [25]. Despite its importance, establishing traceability in prac-

tice is not a trivial task [25]. Our recent systematic literature review reported on 21

challenges of implementing traceability in organizational settings [4]. In particular,

the findings revealed that in practice, traceability is perceived as an overhead, and its

potential benefits are invisible throughout the software development lifecycle. Previ-

ous studies [6, 25] pinpointed the provider-user gap as the main factor that shapes this

perception, along with the poor visualization of trace links. As a result, practitioners

become demotivated to create and maintain trace links and assign a low priority to

traceability tasks. In addition, previous studies [6, 25, 26] raised concerns regarding

the deterioration of trace links as a consequence of not updating these links when

artifacts change. These changes should be propagated and affected stakeholders

should be notified in order to update the corresponding trace links.

The global software development paradigm exacerbates these issues, as the com-

munication, coordination, and trust among stakeholders is difficult to achieve in dis-

tributed settings [4]. One of the few studies that provides empirical evidence on re-

quirements traceability in interorganizational software projects has been carried out

by Rempel et al. [3]. Rempel et al. [3] outlined organizational boundaries as the main

problem area, as it leads to restricted access to artifacts created by the other project

parties due to lack of trust. Therefore, the authors outlined the need to ensure availa-

bility and reliability of traceability in interorganizational software projects. To address

these requirements, our study proposes a blockchain-enabled prototype for require-

ments traceability (BC4RT) which is described in Section 3.

3 Blockchain-enabled Requirements Traceability Prototype

Managing and tracing requirements throughout the software development lifecycle in

a transparent and reliable fashion is important to ensure trust among different stake-

holders. Fig. 1 depicts a simplified version of the software development lifecycle

which consists of 4 logical users – requirements manager, developer, tester, and cus-

tomer. Other users are omitted for simplicity.

Fig. 1. High-level conceptualization of blockchain-enabled requirements traceability prototype:

BC4RT

This prototype relies on the assumptions that users are located in distributed set-

tings, and they do not trust each other, but they need to collaborate for the develop-

ment of a large-scale software development project. In this context, blockchain tech-

nology can serve as a secure repository to store software artifacts and their changes by

ensuring reliability, transparency, trust, traceability, and auditability. The logical users

can perform different operations which are explained in the following section.

Requirements managers can create or register new projects and new requirements

for each project that should be stored on the distributed ledger. The timestamp of

when the requirement was created, contributor name, and the current status “created”

should also be stored on the ledger. In addition, requirements managers should be able

to change existing requirements and their respective attributes, such as version, de-

scription, short name. In such a case, the current status of the requirement should be

“changed” from “created” and the timestamp of when the requirement is changed

should be stored on the ledger. However, the immutable nature of blockchain tech-

nologies does not allow changing stored data.

At first glance, one may argue that the immutable property of blockchain goes

against the ever-changing nature of software artifacts. The authors identified two

potential solutions to address this challenge: (i) when requirements managers change

existing requirements, a new requirement record with a new ID is created. This new

requirement should point to the initial requirement that was changed by means of a

previous requirement ID field; (ii) perceive requirements as digital assets and using

the concept of tokens to represent them. Each token may generate its own blockchain

ledger to audit the lifecycle of any requirement token throughout the software devel-

opment lifecycle. In this study, the authors followed the latter approach, as it is more

efficient than the former.

Furthermore, developers can register source code files for each specific require-

ment and consequently, the current status of the requirement is updated from “creat-

ed” or “changed” to “implemented”. Testers can register test cases for each require-

ment and the results of these test cases. The registration of test cases changes the sta-

tus of the requirement automatically from “implemented” to “tested”. Moreover, the

customer has permission to view requirements’ changes, and track requirements’

lifecycle using the audit mode. In addition, the customer can perform more complex

queries, for instance retrieve the IDs and number of requirements whose status is

“tested”, but the test result is “failed”.

Finally, it is important to consider an efficient, scalable and secure platform to

store software artifacts, such as source code files, or test cases files. If conventional

blockchain platforms were chosen, these files would have been stored in secure off-

chain storage, such as IPFS (Interplanetary File System) and the generated hash

would have been stored in the blockchain platform to access the file’s content [17].

This study adopts a novel blockchain platform that enables the secure storage of files

of any size and type, while retaining efficiency and scalability. The blockchain plat-

form adopted by this study is explained in the following section 4.1.

4 Implementation

4.1 Neural Distributed Ledger

The concept of neural distributed ledger (NDL) was recently proposed by Velasco et

al. [27] and inspired by Swan [28]’s idea of developing blockchains as “personal

thinking chains”. A neural blockchain is internally structured into subsets of groups

that work in parallel and are interconnected analogously to how neuron groups are

aggregated in human brains. The main utility of such blockchains lies in addressing

interoperability, performance, and scalability issues that exist in conventional block-

chain platforms [27]. In this study, the authors decided to implement an innovative

and collaborative P2P network, namely NDL ArcaNet. NDL ArcaNet ensures the

protection and secure transfer of digital assets of any type.

In order to understand NDL ArcaNet, it is important to explain the concept of NDL

Arca, as a secure token directory. NDL Arca [29] is a distributed repository of tokens

that ensures the protection of tokens’ content against illegitimate access. Tokens are

valuable, unique and certified data that must be accessed only by their legitimate

owners and must be stored throughout their lifecycle in a secure repository to prevent

unauthorized access and illegitimate modifications. Tokens are grouped into tables

which are in turn grouped into databases. This structure lies in the combination of

key-value storage and column-based databases. The keys are valuable to enable the

identification of contents in any environment and are expressed in the ULID (Univer-

sally Unique Lexicographically Sortable Identifier) format. ULID generates identifi-

ers by considering both base32 encoded timestamp (first 10 characters), and random-

ness (remaining 16 characters). The values are always encrypted and point to dynamic

tables (variable array []). The non-static columns of these tables contain token fields’

ID and token fields’ content. This dynamic nature enables token fields’ values to be

changed according to users’ needs. CRUD (create, read, update, delete) operations

can be performed on tokens, along with other operations, such as import and export.

Moreover, according to [29], the security of NDL Arca is ensured by applying a set

of techniques, such as 2-key encrypted token, as the data is double encrypted with

database password and token password, AES 256 (Advanced Encryption Standard),

RSA (Rivest-Shamir-Adleman), zero trust and zero knowledge cryptography, and

hashing functions. It is worthy to mention that although NDL Arca was designed

mainly for a blockchain network due to its inherent capabilities of replication, hashing

of contents, and distributing them across the network, it can be installed on any sys-

tem according to [29], e.g., using Arca to create a centralized dedicated server, or a

database system in the cloud. The use of NDL Arca in a multi-domain network is

referred to as NDL ArcaNet.

In our case study, requirements are considered tokens because they are valuable,

identifiable, and unique digital assets. Requirements tokens are stored in a secure

token repository and are created and updated in a collaborative manner among differ-

ent stakeholders of the software development lifecycle who share a secret key. Each

operation applied on tokens is visible and transparent to other parties in the network.

All the operations performed on tokens will be validated by trusted certifiers who are

incentivized by means of service payments that they receive for each digital signature.

Trusted certifiers will validate operations on tokens without knowing the content of

tokens, by applying zero-knowledge cryptography.

The authors selected this platform due to three main advantages that are important

in the software engineering context: (i) performance efficiency – each node (wallet)

applies and verifies its own transactions independently, enabling parallel work, thus

maximizing the number of transactions per second. Each node can trust the token

content by checking signatures, removing the need for the majority of the network

nodes to vote and reach a consensus. The lack of consensus leads to each wallet work-

ing as a local database, but with slightly higher latency due to the use of signature

mechanisms. Should consensus-based distributed ledger technologies be used, storing

a large number of requirements or other large software files would not be affordable.

However, NDL systems scale better and their limitations regarding real time opera-

tions are comparable to the limitations of centralized databases. (ii) sustainability –

nodes collaborate to validate transactions, therefore costly, resource-wasteful, and

competitive-based consensus algorithms (e.g., PoW, PoS) are not used and gas is not

required to perform transactions. (iii) scalability – the platform can integrate million

nodes because each node is independent and can work in real-time. While the Internet

transfers packets of data, NDL ArcaNet transfers signed packets of data. Despite this,

ArcaNet is able to scale in a similar fashion to the Internet.

4.2 Blocks Structures for BC4RT Prototype

The proposed blockchain-enabled requirements traceability prototype relies on the

underlying blocks structures that are depicted in Fig. 2.

Fig. 2. Blocks structures for BC4RT prototype

Each token generates its own signed blockchain ledger that enables the verification

of its provenance, integrity, evolution, and history, by means of the audit mode. The

goal of the BC4RT prototype is to trace the lifecycle of requirements throughout the

software development lifecycle. Therefore, a token was created for each requirement,

as a child of the project token. The project token consists of the following fields: to-

ken code (ULID), domain, name of the project, and the password of the token. Other

fields can be created to include additional information regarding the project. Further-

more, the requirement token consists of the following fields: token code (ULID),

project code that points to the parent token, token password, domain, version of the

requirement, the current status of the requirement (created, modified/changed, imple-

mented, tested), requirement’s description, short name, timestamp of when the re-

quirement was created, timestamp of when the requirement was modified, the con-

tributor who performed a specific operation on the token, flags (implemented/tested),

source code file, and test cases file.

The emission of the requirement token generates the first block (Block #1) which

is composed of the following elements: metadata, e.g., ULID, and timestamp, previ-

ous block/parent signatures which entail signing with private keys the hash of the

previous block, token content which consists of the fields’ content of the requirement

token, next signers or the signers of the next block which are a set of trusted certifiers

and random nodes, and the signatures of the current block. Signers that are defined in

the previous block’s next signers field should sign with their private keys the hash of

the current block fields (metadata, parent signatures, token content, and next signers).

While the consequent blocks have the same structure as the first block, they do not

store the whole content of token fields, only the changes.

Finally, it is noteworthy that any first block needs a genesis block which is provid-

ed by the other parties of the network in a random manner. This structure allows

stakeholders of the software development lifecycle to keep track of

what/when/how/by whom requirements were created, changed, implemented, and

tested in a trustworthy and transparent manner. A shared traceability repository based

on blockchain ensures that software artifacts stored by distributed stakeholders have

not been altered illegitimately.

4.3 User Interface

In what follows, we present the front end of the BC4RT application using simple

scenarios that rely on the iTrust application that can be accessed online [30]. iTrust is

an electronic health records application that is developed and maintained as a soft-

ware engineering project for undergraduate students at North Carolina State Universi-

ty [31]. iTrust was chosen because it deals with safety-critical information and due to

the availability of the traceability dataset [31].

The user logs in by specifying the role, i.e., requirements manager, coder, tester, or

customer, as depicted in Fig. 3. Fig. 4, Fig. 5, and Fig.6 show the view of the re-

quirements manager who is allowed to create a new project, new requirement tokens,

and update existing requirements, respectively. The attributes of requirements are

requirement ID, contributor, requirement version, description, short name, current

state, history of states (created, changed, implemented, tested), source code file, and

test case file. Each of these tokens generates its own blockchain ledger that stores the

changes that have been validated by trusted certifiers.

Fig. 3. Login view

First, the requirements manager creates a new project with the assigned project to-

ken ID: 01G4JM6G1FQPPHKAH4EAXNA27M (See Fig. 4). Then, the requirements

manager creates new requirements for the project by clicking on the “Create” option

of the radio button “Requirement”, inputs the description and short name of the re-

quirement, while the token ID is generated automatically (See Fig. 5).

Fig. 4. Requirements Manager view (“Create Project”)

Fig. 5. Requirements Manager view (“Create Requirement”)

Once the requirements manager clicks “Accept”, the blockchain ledger is generated

for the requirement token. The current state of the requirement is “created”, and the

timestamp of when the requirement was created is also presented to the user (See Fig.

6). The requirements manager can also update previously-created requirements by

clicking on the “Update” option of the radio button “Requirement”. For instance, in

Fig. 6 the requirements manager is updating the requirement with the ID=

01G4JMRW7M6CZPXJJK030H4AKK, by entering the new version=1.1, descrip-

tion=“The patient should be able to view and edit lab procedure tasks” and short

name= “REQ_ViewEditLab”. Once the requirement manager clicks “Accept”, the

requirement token fields are updated, the current status is “changed”, and the

timestamp of when the requirement was changed is also stored and presented to the

user, as depicted in Fig. 6.

Fig. 6. Requirements Manager view (“Update Requirement”)

Second, the developer logs in the blockchain platform and is allowed to upload the

source code file for each requirement (See Fig. 7). Once the developer enters a source

code file and clicks on the “Accept” button, the state of the specific requirement token

is updated in three dimensions: (i) source code field is updated with the name of the

file (ii) the implemented field is updated (iii) the current status is changed from “cre-

ated” or “changed” into “implemented”.

Fig. 7. Developer view (“Upload Source Code”)

Third, the tester logs in the blockchain platform and is allowed to upload the test

case file for each requirement (See Fig. 8). Once the tester enters a test case file and

clicks on the “Accept” button, the state of the specific requirement is updated in three

dimensions: (i) test case field is updated with the test case file name (ii) the current

status of the requirement is changed from “implemented” into “tested” (iii) the tested

field is updated, if the tester clicks on the “Passed” option of the radio button “Test

Result”

Fig. 8. Tester view (“Upload Test Cases and Test Results”)

Finally, the customer is constrained to only view the state of the project token and

requirements tokens. Therefore, the customer can check the list of all requirements,

which requirements have been created, changed, implemented, and/or tested. In addi-

tion, it is possible to trace the lifecycle of each requirement by double clicking on a

specific requirement record. An example of the history of a specific requirement is

depicted in Fig. 9.

Fig. 9. Trace the lifecycle of a specific requirement

5 Conclusion and Future Work

This study presented a blockchain-oriented prototype, namely BC4RT to enable the

traceability of software artifacts created by distributed stakeholders throughout the

software development lifecycle. For each requirement stored on the distributed ledger,

one could trace its origin, updates, the timestamp of when it was created or changed,

if it was implemented and/or tested, and by whom, the current status, and related

software artifacts, such as source code and test cases, in a scalable, efficient and

trustworthy manner. Therefore, requirements managers, developers, testers, custom-

ers, along with other stakeholders, e.g., project managers or quality assurance team

could benefit from the application of blockchain, since it ensures full visibility on the

software development lifecycle and facilitates tracking projects’ progress. Enabling

full visibility can enhance the performance of practitioners in solving software engi-

neering tasks. For instance, keeping track of all changes in a transparent and reliable

manner facilitates the analysis of the impact of these changes on system’s cost, time,

and quality, which is not a trivial task in distributed settings.

The authors implemented the proposed BC4RT prototype using a novel neural dis-

tributed ledger, namely NDL ArcaNet because the inherent features of this platform

ensure performance efficiency, sustainability and scalability while retaining security.

The authors perceive the potential of third and fourth generation blockchain platforms

and encourage further exploration of the benefits and feasibility of such platforms

beyond the software engineering context. Domains that need to process massive data,

such as Internet-of-Things (IoT) may greatly benefit from the efficiency and increased

security of neural blockchain platforms.

Our future work will focus on validating the usefulness, practicality, and validity of

the blockchain-enabled prototype through software engineering experts’ judgement.

Future versions of the prototype may incorporate the emission of tokens to represent

other software artifacts, such as source code and test cases, as children of require-

ments’ tokens. In addition, future work may be devoted to automate the registration of

software artifacts, their attributes, content and changes, by means of data ingestion

tools or plugins that can capture the artifacts generated from a variety of tools used

throughout the software development lifecycle [32].

References

1. Ebert C, Kuhrmann M, Prikladnicki R (2016) Global Software Engineering: Evolution and

Trends. In: 2016 IEEE 11th International Conference on Global Software Engineering

(ICGSE). pp 144–153

2. Niazi M, Mahmood S, Alshayeb M, et al (2016) Challenges of project management in

global software development: A client-vendor analysis. Information and Software Technol-

ogy 80:1–19. https://doi.org/10.1016/j.infsof.2016.08.002

3. Rempel P, Mäder P, Kuschke T, Philippow I (2013) Requirements Traceability across

Organizational Boundaries - A Survey and Taxonomy. In: Doerr J, Opdahl AL (eds) Re-

quirements Engineering: Foundation for Software Quality. Springer, Berlin, Heidelberg, pp

125–140

4. Demi S, Sanchez-Gordon M, Colomo-Palacios R (2021) What have we learnt from the

challenges of (semi-) automated requirements traceability? A discussion on blockchain ap-

plicability. IET Software

5. Gotel O, Cleland-Huang J, Hayes JH, et al (2012) Traceability Fundamentals. In: Cleland-

Huang J, Gotel O, Zisman A (eds) Software and Systems Traceability. Springer, London,

pp 3–22

6. Wohlrab R, Knauss E, Steghöfer J-P, et al (2018) Collaborative traceability management: a

multiple case study from the perspectives of organization, process, and culture. Require-

ments Eng. https://doi.org/10.1007/s00766-018-0306-1

7. Zheng Z, Xie S, Dai H-N, et al (2018) Blockchain challenges and opportunities: A survey.

International Journal of Web and Grid Services 14:352–375

8. Belotti M, Božić N, Pujolle G, Secci S (2019) A Vademecum on Blockchain Technologies:

When, Which, and How. IEEE Communications Surveys Tutorials 21:3796–3838.

https://doi.org/10.1109/COMST.2019.2928178

9. Vacca A, Di Sorbo A, Visaggio CA, Canfora G (2021) A systematic literature review of

blockchain and smart contract development: Techniques, tools, and open challenges. Jour-

nal of Systems and Software 174:110891. https://doi.org/10.1016/j.jss.2020.110891

10. Pinna A, Ibba S, Baralla G, et al (2019) A Massive Analysis of Ethereum Smart Contracts

Empirical Study and Code Metrics. IEEE Access 7:78194–78213.

https://doi.org/10.1109/ACCESS.2019.2921936

11. Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system. Decentralized Business

Review 21260

12. Colomo-Palacios R (2020) Cross Fertilization in Software Engineering. In: Yilmaz M,

Niemann J, Clarke P, Messnarz R (eds) Systems, Software and Services Process Improve-

ment. Springer International Publishing, Cham, pp 3–13

13. Marchesi M (2018) Why blockchain is important for software developers, and why soft-

ware engineering is important for blockchain software (Keynote). In: 2018 International

Workshop on Blockchain Oriented Software Engineering (IWBOSE). pp 1–1

14. Demi S, Colomo-Palacios R, Sánchez-Gordón M (2021) Software Engineering Applica-

tions Enabled by Blockchain Technology: A Systematic Mapping Study. Applied Sciences

11:2960. https://doi.org/10.3390/app11072960

15. Lenarduzzi V, Lunesu MI, Marchesi M, Tonelli R (2018) Blockchain applications for agile

methodologies. In: Proceedings of the 19th International Conference on Agile Software

Development: Companion. Association for Computing Machinery, Porto, Portugal, pp 1–3

16. Yilmaz M, Tasel S, Tuzun E, et al (2019) Applying Blockchain to Improve the Integrity of

the Software Development Process. In: Walker A, O’Connor RV, Messnarz R (eds) Sys-

tems, Software and Services Process Improvement. Springer International Publishing,

Cham, pp 260–271

17. Bose RPJC, Phokela KK, Kaulgud V, Podder S (2019) BLINKER: A Blockchain-Enabled

Framework for Software Provenance. In: 2019 26th Asia-Pacific Software Engineering

Conference (APSEC). pp 1–8

18. Yau SS, Patel JS (2020) Application of Blockchain for Trusted Coordination in Collabora-

tive Software Development. In: 2020 IEEE 44th Annual Computers, Software, and Appli-

cations Conference (COMPSAC). pp 1036–1040

19. Damian D, Chisan J (2006) An Empirical Study of the Complex Relationships between

Requirements Engineering Processes and Other Processes that Lead to Payoffs in Produc-

tivity, Quality, and Risk Management. IEEE Trans Softw Eng 32:433–453.

https://doi.org/10.1109/TSE.2006.61

20. Franch X, Fernández DM, Oriol M, et al (2017) How do Practitioners Perceive the Rele-

vance of Requirements Engineering Research? An Ongoing Study. In: 2017 IEEE 25th In-

ternational Requirements Engineering Conference (RE). pp 382–387

21. Fucci D, Palomares C, Franch X, et al (2018) Needs and challenges for a platform to sup-

port large-scale requirements engineering: a multiple-case study. In: Proceedings of the

12th ACM/IEEE International Symposium on Empirical Software Engineering and Meas-

urement. Association for Computing Machinery, New York, NY, USA, pp 1–10

22. Akbar MA, Sang J, Khan AA, Hussain S (2019) Investigation of the requirements change

management challenges in the domain of global software development. Journal of Soft-

ware: Evolution and Process 31:e2207

23. Jayatilleke S, Lai R (2018) A systematic review of requirements change management.

Information and Software Technology 93:163–185.

https://doi.org/10.1016/j.infsof.2017.09.004

24. Gotel OCZ, Finkelstein CW (1994) An analysis of the requirements traceability problem.

In: Proceedings of IEEE International Conference on Requirements Engineering. pp 94–

101

25. Maro S, Steghöfer J-P, Staron M (2018) Software traceability in the automotive domain:

Challenges and solutions. Journal of Systems and Software 141:85–110.

https://doi.org/10.1016/j.jss.2018.03.060

26. Mäder P, Gotel O (2012) Towards automated traceability maintenance. Journal of Systems

and Software 85:2205–2227. https://doi.org/10.1016/j.jss.2011.10.023

27. Velasco C, Colomo-Palacios R, Cano R (2020) Neural Distributed Ledger. IEEE Software

37:43–48. https://doi.org/10.1109/MS.2020.2993370

28. Swan M (2015) Blockchain Thinking : The Brain as a Decentralized Autonomous Corpora-

tion [Commentary]. IEEE Technology and Society Magazine 34:41–52.

https://doi.org/10.1109/MTS.2015.2494358

29. Arca. In: ByEvolution Creative Factory. https://byevolution.com/en/arca/. Accessed 8 Jun

2022

30. iTrust. In: SourceForge. https://sourceforge.net/projects/itrust/. Accessed 23 May 2022

31. Meneely A, Smith B, Williams L (2012) Appendix B: iTrust electronic health care system

case study. Software and Systems Traceability 425

32. Demi S, Sánchez-Gordón M, Colomo-Palacios R (2021) A Blockchain-Enabled Framework

for Requirements Traceability. In: Yilmaz M, Clarke P, Messnarz R, Reiner M (eds) Sys-

tems, Software and Services Process Improvement. Springer International Publishing,

Cham, pp 3–13

