
Towards the integration of security practices in the

software implementation process of ISO/IEC 29110: A

mapping

Mary-Luz Sánchez-Gordón1, Ricardo Colomo-Palacios2, Alex Sánchez3, Antonio de

Amescua Seco1 and Xabier Larrucea4

1 Universidad Carlos III de Madrid, Computer Science Department

Av. Universidad 30, Leganés, 28911, Madrid, Spain

mary_sanchezg@hotmail.com, amescua@inf.uc3m.es
2 Faculty of Computer Sciences, Østfold University College

Postboks 700, 1757 Halden, Norway

ricardo.colomo-palacios@hiof.no
3 LogicStudio

Ciudad del Saber, Building 235 Panama

alex.sanchez@logicstudio.net
4 Tecnalia, Bizkaia, Spain

xabier.larrucea@tecnalia.com

Abstract. Secure software practices are gradually gaining relevance among

software practitioners and researchers. This is happening because today more

than ever software is becoming part of our lives and cybercrimes are constantly

appearing. Despite its importance, its current practice in the software industry is

still scarce. Indeed, software security problems are divided 50/50 between bugs

and flaws. In particular, it remains a significant challenge for software practi-

tioners in small software companies. Therefore, there is a need to support small

companies in changing their existing ways of work to integrate these new and

unfamiliar practices. The aim of this study is twofold. First, to help building an

awareness of the software security process among practitioners in small compa-

nies. Second, to help the integration of these practices with software implemen-

tation process of ISO/IEC 29110 which results in an extension of the latter with

additional activities identified from the industry best practices. Nevertheless,

the extension proposal is to be performed selectively, based on the value of the

software as an asset to the stakeholders and on stakeholders needs.

Keywords: Software Security, CSSLP, S-SDLC, small companies, VSE,

ISO/IEC 29110

1 Introduction

Today, more than ever, software has become part of our lives. It is integrated into

systems that we use every day and we are increasingly dependent on those systems to

mailto:ricardo.colomo-palacios@hiof.no

work. Specially, developed nation´s economy and defense depend in large part on the

reliable execution of software. In fact, software is ubiquitous —software is every-

where— affecting all aspects of our personal and professional lives [1]. Therefore,

security becomes an important issue and a crucial requirement for software systems

[2]. New security challenges arise when new —or old— technologies are put to new

use. Opening the Internet to commercial use in the early 1990s raised the importance

of security policies for remote transactions [3]. There is evidence that global intercon-

nectedness combined with the proliferation of hacker tools means that today’s com-

puter systems are actually less secure than equivalent systems a decade ago [4]. Ap-

plications have been vulnerable for as long as they have existed. Over the past few

years, aside from operating systems, they have been cited as the leading vector for

attacks. In 2011, National Vulnerability Database maintained by US National Institute

for Standards and Technology (NIST)1 stated that 92% of the reported vulnerabilities

are in applications and not due to insecure networks. That same year, top vulnerabili-

ties included2: SQL injection, integer overflow, buffer overflow, uncontrolled format

string, missing authentication, missing or incorrect authorization, and reliance on

untrusted inputs in a security decision (aka tainted inputs). Already in 2003, the pro-

gramming errors were 64% of the vulnerabilities in the NIST database, and 51 out of

those were repeated basic mistakes such as buffer overflows, cross-site scripting,

injection flaws [5].

 According to the “2015 (ISC)² Global Information Security Workforce Study”,

72% of the survey respondents (13,930 qualified information security professionals),

indicated that application vulnerabilities are their top security concern [6]. Moreover,

regarding cloud security threats, they pointed out that data breaches and data loss

topped the list of concerns. In this sense, the “2016 Cost of Data Breach Study: Glob-

al Analysis” carried out by Ponemon Institute [7], stated that average total cost of a

data breach for the 383 companies participating in this research increased from $3.79

to $4 million. The average cost paid for each lost or stolen record containing sensitive

and confidential information increased from $154 in 2015 to $158 by 2016. Further-

more, Gartner [8] claims that worldwide spending on IT security products and ser-

vices will reach $81.6 billion in 2016; an increase of 7.9% over 2015. Another issue is

the loss of credibility, while intangible, has tangible repercussions. Paying the extra

cost of developing software correctly from the start reduces the cost of fixing it after it

is deployed —and produces a better, more robust, and more secure product [9]. This

approach reduces the need to patch the software in order to fix security holes. Moreo-

ver, incorporating security in software is often misunderstood as an impediment to

business agility and not necessarily as an enabler for the business to produce quality

and secure software [10]. In certain situations, security in software is not even consid-

ered, it is overlooked [11, 10]. Moreover, the common approach towards the inclusion

of security within a software system is to identify security requirements after the defi-

nition of a system [2]. Thus, incorporating security in later stages of software devel-

opment will increase the risks of introducing security vulnerabilities into software. A

1 http://nvd.nist.gov/
2 http://cwe.mitre.org/top25/#Listing

vulnerability is a software defect that an attacker can exploit [9]. Software security

problems are divided 50/50 between bugs and flaws [12]. A bug is an implementa-

tion-level software problem whereas a flaw is a design-level or architectural software

defect.

The most critical difference between secure software and insecure software lies in

the nature of the processes and practices used to specify, design, and develop the

software [9]. Traditionally, Software Engineering deals with security as a non-

functional requirement and usually considers it after the definition of the systems

[10]. Consequently, software that is developed with security in mind is typically more

resistant to both intentional attack and unintentional failures [9, 13]. Security in the

software development life cycle (SDLC) is necessary but not sufficient. In practice,

there are a lot of aspects that are not part of the life cycle for any particular applica-

tion such as building the security team, maintaining legacy code, gaining the organi-

zation’s support (budget and respect), establishing an education and training program,

establishing standards and metrics, handling breaches and incidents, tooling and

building feedback loops for continuous improvement [13].

In the context of this research, a vast majority of small software companies are

very small entities (VSEs) —enterprise, government, or not-for-profit organizations;

departments; or projects with up to 25 people who develop systems with hardware

and software components and/or software products [14]. They face unique challenges

[15], their products are sold to their customers directly or are integrated into those

developed by larger organizations, possibly distributed to thousands of users world-

wide [14]. In addition to the time constraints placed on software development pro-

jects, scarce human resources are also noted as a limitation [15, 16]. Without enough

resources in order to achieve all the essential tasks within the required timeline, con-

sidering the uptake of increased work effort (including security during software de-

velopment) is noted as being difficult if not improbable. Therefore, the aim of this

study is twofold. First, to create an awareness of the software security process among

practitioners in small companies. Second, to provide the first approach towards nar-

rowing the gap between security and ISO/IEC 29110 standard, which fix well in this

type of companies. The integration of these practices with software implementation

(SI) process of ISO/IEC 29110 results in an extension of the latter with additional

activities identified from the industry best practices in security software —Certified

Secure Software Lifecycle Professional (CSSLP) common body of knowledge

(CBK). This body of knowledge was chosen because it is an approach agnostic and

focuses on SDLC. Nevertheless, the extension proposal is to be performed selectively

on the basis of the value of the software as an asset to the stakeholders and on stake-

holders needs. The remainder of this paper is structured as follows: Section 2 outlines

the CSSLP CBK and SI process ISO/IEC 29110. In Section 3 the research approach

and results are presented. Finally, Section 4 summarizes a conclusion as well as out-

lines future work.

2 Background

2.1 Models and Software Security Certifications

There are a variety of models such as CERT Resilience Management Model “RMM”,

Building Security in Maturity Model “BSIMM”, Capability Maturity Model Integra-

tion for Acquisitions “CMMI”, SwA Forum Processes and Practices Group Process

Reference Model “PRM”, and OWASP Software Assurance Maturity Model

“SAMM”. Similarly, Microsoft has a method for software development and on how

to develop secure software which is called Security Development Lifecycle (SDL).

Each one has their advantages and disadvantages. It seems overwhelming to non-

security experts like software practitioners in small companies. As a consequence of

the need for training and certification on software security, the industry has developed

certifications based on specific languages and/or platforms. In what follows, there are

some of the relevant certifications [17].

 Global Information Assurance Certification (GIAC) offers three software security

certifications3. The certifications in Java and .NET —GIAC Secure Software Pro-

grammer-.NET/.JAVA (GSSP-.NET/.JAVA). And the GIAC Certified Web Appli-

cation Defender (GWEB).

 The EC-Council offers a program known as EC-Council certified secure program-

mer (ECSP) that has certifications in Java and .NET4 —Certified Secure Program-

mer in .NET (ECSP.Net) and Certified Secure Programmer in .Java (ECSP-Java).

 The CERT Secure Coding Professional Certificates is part of Carnegie Mellon

University’s Software Engineering Institute. This certificate program is designed

for developers who are programming in C and C++, or Java language

 The International Information System Security Certification Consortium, also

known as ISC2 offers a Certified Secure Software Lifecycle Professional (CSSLP)

certification. CSSLP was designed to validate SDLC security competencies based

on a common body of knowledge (CBK).

The CSSLP CBK approach was chosen as a reference for this study due to its ag-

nostic approach, its independence of any specific language or vendor and its focus on

SDLC.

2.2 The Certified Secure Software Lifecycle Professional Common Body of

Knowledge

The Certified Secure Software Lifecycle Professional (CSSLP) common body of

knowledge (CBK) provides a comprehensive approach to building secure systems by

incorporating security into all phases of the software lifecycle. The International In-

formation Systems Security Certification Consortium (ISC) sponsors the CSSLP cer-

3 http://www.giac.org/certifications/software-security
4 https://www.eccouncil.org/programs/certified-secure-programmer-ecsp/

tification5. The CSSLP certification is international in its scope and therefore, does

not explicitly address US standards such as those from NIST. The CSSLP certifica-

tion emphasizes best practices in secure software development and covers the follow-

ing eight domains of the CSSLP CBK [10]:

 Secure Software Concepts include the core software security requirements and

foundational design principles as they relate to issues of privacy, governance, risk

and compliance. The aim is to understand the software methodologies needed in

order to develop software that is secure and resilient to attacks.

 Security Software Requirements provide concepts related to understanding the

importance of identifying and developing software with secure requirements which

could be incorporated in order to produce software that is reliable, resilient and re-

coverable.

 Secure Software Design gives an understanding of how to ensure that software

security requirements are included in the design of the software. That means secure

design principles and process.

 Secure Software Implementation/Coding allows understanding the importance

of programming concepts that can effectively protect software from vulnerabilities.

That means software coding vulnerabilities, defensive coding techniques and pro-

cesses, code analysis and protection, and environmental security considerations

that should be factored into software.

 Secure Software Testing includes the overall strategies and plans of functional

and security testing that should be performed, the criteria for testing, concepts re-

lated to impact assessment and corrective actions, and the test data lifecycle.

 Software Acceptance provides an understanding of the requirements for software

acceptance, paying specific attention to compliance, quality, functionality, and as-

surance before software is released or deployed into production.

 Software Deployment, Operations, Maintenance and Disposal is focused on the

identification of processes during installation and deployment, operations and

maintenance. Finally, disposal that can affect the ability of the software to remain

reliable, resilient, and recoverable in its prescribed manner.

 Supply Chain and Software Acquisition give an understanding of the importance

of supplier sourcing and being able to validate vendor integrity, from third-party

vendors to complete outsourcing. That means how to manage risk through the

adoption of standards and best practices for proper development and testing across

the entire lifecycle of products.

2.3 ISO/IEC 29110 Standard

Although ISO/IEC 29110 is an emerging standard, a series of pilot projects have been

completed in several countries utilizing some of the deployment packages (DPs) de-

veloped [18]. This ISO/IEC 29110 standard is applicable to Very Small Entities

(VSEs). VSEs are enterprises, organizations, departments or projects of up to 25 peo-

5 https://www.isc2.org/csslp/default.aspx

ple. This standard has a generic profile group that provides a four-stage roadmap for

VSEs that do not develop critical systems or critical software: Entry, Basic, Interme-

diate and Advanced profiles [19]. This study is based on the Basic profile which de-

scribes the development practices of a single application by a single project team.

Basic profile has two interconnected processes: Project Management (PM) and Soft-

ware Implementation (SI). This study focuses on the SI process because its goal is to

achieve a software product that satisfies the needs and expectations of all potential

users, including security issues.

Software Implementation Process. The aim of the SI process is to achieve systemat-

ic performance of the analysis, design, construction, integration, and test activities for

new or modified software products according to the specified requirements. The ac-

tivities of the SI process are:

 Software Implementation Initiation ensures that the Project Plan established in

Project Planning activity is committed to by the Work Team

 Software Requirements Analysis analyzes the agreed Customer’s requirements

and establishes the validated project requirements.

 Software Architectural and Detailed Design transforms the software require-

ments to the system software architecture and software detailed design

 Software Construction develops the software code and data from the Software

Design.

 Software Integration and Tests ensures that the integrated Software Components

satisfy the software requirements.

 Product Delivery provides the integrated software product to the Customer

3 Research Approach

Due to increasing recognition of the importance of security throughout the entire life

cycle, new initiatives strengthening ties for security within the SDLC have been con-

ducted. However there is a need to assist organization in processes that minimize and

ideally prevent security vulnerabilities [1]. This is especially true for small companies

because they find hard to deal with their software process [15]. Consequently, it is

important to harmonize software processes and security issues. The authors carried

out mapping, as it is one of the most widely used strategies in harmonizing software

processes. They follow the guidelines provided at [20] including these steps: 1) Ana-

lyze the models; 2) Design the mapping; 3) Carry out the mapping; 4) Present the

outcomes and 9) Analyze the results. In what follows, the mapping performed is de-

scribed using the method provided.

3.1 Models Analysis

The ISO/IEC 29110 standard and CSSLP certification were chosen for this study

based on their approach agnostic and growing relevance among small organizations

and security professionals, respectively. The first activity is to analyze each reference

model involved in a mapping process. ISO/IEC 29110 and CSSLP CBK were studied

in detail.

3.2 Mapping Design

The design involves the following activities: (i) Identification of elements to be com-

pared, they are the SI process of ISO/IEC 29110 standard and the practices (in each

domain) of CSSLP CBK. (ii) Direction of the comparison, it is from ISO/IEC 29110

standard to CSSLP CBK. (iii) Comparison scale definition, authors use a “traffic

light” scale for the one to one mapping. This scale is also used in our previous works

[21]:

 E: explicit, the item has appeared in the framework’s definition.

 I: implicit, the item has not appeared explicitly in the framework definition. In-

ferred by the authors or referred inside a previous work of the authors.

 U: unavailable, the item has not appeared anyway.

(iv) Comparison template definition, all these values are analyzed and checked

from a holistic point of view and the authors determine to what extent activities (from

a SI process of ISO/IEC 29110) that are related to practices/techniques of CSSLP

CBK could be extended.

3.3 Mapping

This mapping is an iterative process because the comparison is performed completely

on one ISO/IEC 29110 activity and then on the others in turn. At the same time, it is

incremental due to the comparison outcome grows and evolves with each iteration

until it becomes the final one. The authors analyze the ISO/IEC 29110 with CSSLP

CBK. For the SI process of ISO/IEC 29110 all activities are studied. Moreover, the

authors identified specific practices and/or techniques of CSSLP CBK. The objective

is not to set a naïve approach which compares just names. Therefore, a relationship

between reference models is defined first and then a drilling down process analyzing

in detail these relationships helps us to identify fine grained relationships. All map-

pings are managed by using several spreadsheets where ISO/IEC 29110 activities are

displayed as rows and practices/techniques of CSSLP CBK are displayed as columns.

As a result, a set of practices and techniques to help practitioners understand how to

secure their development processes and to apply those principles in practice is de-

fined. It represents an extension to the ISO/IEC 29110 standard.

3.4 Outcomes

Figure 1 depicts the resulting mapping for domains of CSSLP CBK. Each one has

a fulfillment result based on the intersection of activities of ISO/IEC 29110. At first

glance the result is not surprising but it is interesting from a security perspective. At

high level, two domains, Secure Software Concepts and Supply Chain and Software

Acquisition, have not appeared anywhere. Moreover, Software Deployment, Opera-

tions, Maintenance and Disposal are partially related with Product Delivery. Alt-

hough Software Implementation Initiation is not apparently related at this level, it is

crucial because it ensures that the project plan, including security issues, is committed

by the team. The other five domains receive more coverage —Requirement, Design,

Implementation, Testing, and Acceptance— as can be seen below. Next, the activities

of SI process ISO/IEC 29110 and the pertinent practices of CSSLP CBK.

Fig. 1. Mapping between ISO/IEC 29110 to CSSLP CBK

Implementation initiation. This activity prepares the team for the remainder of the

activities and brings together all the necessary tools to accomplish the project. Small

companies’ constraint is limited budget for setting up the environment. At this point,

it is important to be familiar with what each tool or technology can be used for and

how it can impact the overall state of software security.

Software Requirement Analysis. This activity studies users’ needs and expectations

to define the project scope and identify key functionalities, including non-functional

requirements —and security is often considered as such. Moreover, it is worth noth-

ing that small companies cannot afford to have security experts and there are several

types of security requirements that address the various principles of software se-

curity. Nevertheless, protection needs can be elicited using several methods includ-

ing brainstorming, surveys, policy decomposition, data classification and use and

misuse case modeling. The policy decomposition process is made up of breaking

down high-level requirements into granular finer level software security requirements.

Data classification can help with assuring that appropriate levels of security controls

are assigned to data based on their sensitivity levels. Finally, use and misuse case

modeling, sequence diagrams and subject–object models can be used to glean soft-

ware security requirements.

Software Design. This activity is the keystone in the SDLC. Failure to describe a

design architecture that will incorporate all the requirements is a common reason for

project failure. Thus semantic or business logic flaws are related to design issues.

Small companies’ constraint is limited development team. When they design soft-

ware, possible threats and security taken into account, and they should take into con-

sideration secure design principles to assure confidentiality, integrity, and availability.

In fact, the time that is necessary to fix identified issues is shorter when the software

is still in the design phase. Below some considerations that could be useful to do that.

 Determine entry and exit points that an attacker could use to compromise the

software asset or the data it processes. Take into account the following princi-

ples: least privilege, separation of duties, layered defense, fail secure, economy

of mechanisms —KISS (Keep It Simple Stupid) principle —, complete mediation,

open design, least common mechanism, and leveraging existing components.

 Design considerations address the core security elements of confidentiality,

integrity, availability, authentication, authorization, and auditing.

 Design process includes attack surface evaluation, threat modeling, control

identification and prioritization, and documentation. Threat models are useful

to identify and prioritize controls (safeguards) that can be designed, imple-

mented (during the development phase), and deployed but it take time.

 Proven software architectures and technologies can be leveraged to enhance

security in software. For instance, authentication, identity Management (IDM),

Credential Management, Flow Control, Auditing/Logging, Data Loss Preven-

tion (DLP), Virtualization and Digital Rights Management

 Review of the software’s design and architecture from a security perspective.

Software construction. This activity entails developers producing components using

a systematic approach. Small companies’ constraints are limited development team

and short time to deliver. In fact, writing secure code is an important and critical fac-

tor in order to ensure the resiliency of software security controls. The mapping per-

formed using the method provided is described in the following section.

 The security advantages or lack thereof of software development methodology

must be taken in account.

 Build security protection controls based on common coding vulnerabilities and

an understanding of how an attacker will try to exploit the software (because of

limited space, details are not included but are available on [10]).

 Secure software development processes include versioning, code analysis and

code review.

 Build Environment and Tools Security. The main kinds of build tools are com-

pilers, packers and packagers —e.g. the Red Hat Package Manager (RPM) and

the Microsoft Installer (MSI).

Software integration and tests. This activity comprises running a set of tests and

identifying issues that must be. Small companies’ constraints are limited development

team. In this sense, security testing can be used to determine the means and opportu-

nities by which software can be attacked. These tests are as follows:

 Both white box and black box security testing —e.g. fuzzing, scanning and

penetration testing— are used to determine the threats to software. They are

based on knowledge of how to test for common software vulnerabilities.

 Testing related to software security issues are testing for input validation, in-

jection flaws testing, testing for nonrepudiation, testing for spoofing, failure

testing, cryptographic validation testing, testing for buffer overflow defenses,

testing for privilege escalations defenses, and anti-reversing protection testing.

 The use of tools which are applicable to the specific situation. Some of the com-

mon security tools include: reconnaissance (information gathering) tools, vulnera-

bility scanners, fingerprinting tools, sniffers/protocol analyzers, password crackers,

web security tools —e.g., scanners, proxies, vulnerability management—, wireless

security tools, reverse engineering tools —assembler and disassemblers, debug-

gers, and decompilers—, source code analyzers, vulnerability exploitation tools,

security-oriented operating systems, and privacy testing tools.

 Fixing defects must never be performed directly in the production environ-

ment, and proper change management principles must be used to promote fixes

from development and test environments into the user acceptance testing

(UAT) and production environment.

Software product delivery. This activity ensures there would be no delays in order

to gain product acceptance so the customer completes the payment to the company.

Small companies’ constraint is short time to deliver and ensure that software is not

only operationally hack-resilient, but also compliant with applicable regulations —i.e.

there is a formal software acceptance process which comprises the validation of secu-

rity requirements and the verification of security controls. In what follows crucial

considerations about the pre- and post-installation software security.

 Security requirements need to be validated and security controls verified by inter-

nal and/or independent third party security testing. Software must not be de-

ployed/released until it has been certified and accredited that the residual risk is at

the appropriate level.

 Hardening of software implicates:

─ Remove maintenance hooks before deployment.

─ Remove debugging code and flags in code.

─ Change the way to write code not to contain any sensitive information —i.e. un-

needed comments, dangling code, or sensitive information from comments in

code.

 Enforcement of security principles means:

─ Use pre-installation checklists in order to ensure that the needed parameters re-

quired for the software to run are appropriately configured.

─ Grant appropriate administrative rights (least privilege) to the software during

the installation process.

─ Not allow developers access to production systems to install software.

 Development and test environment must be the same as the production environ-

ment in which the software will be deployed post-acceptance.

 Bootstrapping and secure startup could be achieved using hardware’s trusted plat-

form module (TPM) chip.

4 Conclusions

Despite of the growing understanding of the importance of including of security

throughout the SDLC, it is usually treated superficially and the typical security pro-

cess is to add a standard set of security mechanism, such as authentication, into the

system [22]. While the current business environment is fast-paced and increasingly

exposed to threats, software practitioners must go beyond when developing software.

Although security throughout the SDLC requires allocation of resources such as time

and has an impact on the project life cycle, it is worthy and valuable. In this paper,

authors shed light on this fact. Its aim is to raise awareness on its importance and to

provide the argument for better enforcement of security and its practices.

Furthermore, this paper presents the integration of these practices with software

implementation (SI) process of ISO/IEC 29110. As a result of this, an extension of the

latter with additional activities identified from the best practices of CSSPL CBK is

presented. Since clearly an organization cannot protect and prevent every risk and

threat, the extension proposal is to be performed selectively on the basis of the value

of the software as an asset to the stakeholders and on stakeholders needs. It is worth

noting that some of these practices appear to have common sense validity but there

are others not so obvious deserving more attention. This study is a first step in expos-

ing and addressing the challenging landscape of security in small companies. As fu-

ture work, a sub-set of the extension will be adapted in a small company because the

security should be properly considered as part of its software development process.

References

1. O’Connor, R.V., Colomo-Palacios, R.: Security Awareness in the Software Are-

na. In: Engemann, K. (ed.) Routledge Companion to Risk, Crisis and Security in

Business. Routledge (2017).

2. Salini, P., Kanmani, S.: Survey and Analysis on Security Requirements Engi-

neering. Comput Electr Eng. 38, 1785–1797 (2012).

3. Gollmann, D.: Computer security. Wiley Interdiscip. Rev. Comput. Stat. 2, 544–

554 (2010).

4. Garfinkel, S.L.: The Cybersecurity Risk. Commun ACM. 55, 29–32 (2012).

5. Heffley, J., Meunier, P.: Can source code auditing software identify common

vulnerabilities and be used to evaluate software security? In: 37th Annual Hawaii

International Conference on System Sciences, 2004. pp. 1–10 (2004).

6. Suby, M., Dickson, F.: Global Information Security Workforce Study. Frost &

Sullivan (2015).

7. Ponemon Institute LLC: 2016 Cost of Data Breach Study: Global Analysis.

(2016).

8. Gartner Says Worldwide Information Security Spending Will Grow 7.9 Percent

to Reach $81.6 Billion in 2016, http://www.gartner.com/newsroom/id/3404817.

9. Allen, J.H., Barnum, S., Ellison, R.J., McGraw, G., Mead, N.R.: Software Secu-

rity Engineering: A Guide for Project Managers. Addison-Wesley Professional

(2008).

10. Mano, P.: Official (ISC)2 Guide to the CSSLP. CRC Press (2015).

11. Daud, M.I.: Secure Software Development Model: A Guide for Secure Software

Life Cycle. Presented at the Proccedings of the International MutiConference on

Engineers and Computer Scientists (IMECS) , Hong Kong (2010).

12. McGraw, G.: Software Security: Building Security In. Addison-Wesley Profes-

sional (2006).

13. Chess, B., Arkin, B.: Software Security in Practice. IEEE Secur. Priv. 9, 89–92

(2011).

14. Laporte, C.Y., O’Connor, R.V.: Systems and Software Engineering Standards for

Very Small Entities: Accomplishments and Overview. Computer. 49, 84–87

(2016).

15. Sánchez-Gordón, M.-L., O’Connor, R.V.: Understanding the gap between soft-

ware process practices and actual practice in very small companies. Softw. Qual.

J. (2015).

16. Sánchez-Gordón, M.-L., O’Connor, R.V., Colomo-Palacios, R.: Evaluating

VSEs Viewpoint and Sentiment Towards the ISO/IEC 29110 Standard: A Two

Country Grounded Theory Study. In: SPICE 2015. pp. 114–127. Springer-

Verlag, Gothenburg, Swedan (2015).

17. Grover, M., Durham, N.C., Cummings, J., Janicki, T.: Moving Beyond Coding:

Why Secure Coding Should be Implemented. J. Inf. Syst. Appl. Res. (2016).

18. O’Connor, R.V., Laporte, C.Y.: The Evolution of the ISO/IEC 29110 Set of

Standards and Guides. Int. J. Inf. Technol. Syst. Approach IJITSA. 10, 1–21

(2017).

19. ISO: Software engineering – Lifecycle profiles for Very Small Entities (VSEs)

Part 5-1-2: Management and engineering guide: Generic profile group: Basic

Profile. , Geneva (2011).

20. Baldassarre, M.T., Caivano, D., Pino, F.J., Piattini, M., Visaggio, G.: Harmoni-

zation of ISO/IEC 9001:2000 and CMMI-DEV: from a theoretical comparison to

a real case application. Softw. Qual. J. 20, 309–335 (2011).

21. Sánchez-Gordón, M.-L., Colomo-Palacios, R., Herranz, E.: Gamification and

Human Factors in Quality Management Systems: Mapping from Octalysis

Framework to ISO 10018. In: EuroSPI 2016. pp. 234–241. Springer-Verlag,

Graz, Austria (2016).

22. Haralambos, M., Giorgini, P.: Integrating Security and Software Engineering:

Advances and Future Visions: Advances and Future Visions. Idea Group Inc

(IGI) (2006).

